Skip to main content

Line Simplification in the Presence of Non-Planar Topological Relationships

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

A main objective of many line simplification methods is to progressively reduce the scale of shape properties and, in turn, provide a more explicit representation of global shape properties. However, current simplification methods which attempt to achieve this objective, while also maintaining non-planar topological relationships, are restricted and cannot always achieve an optimal result. In this paper, we present a line simplification method which removes these restrictions. This is achieved through the use of a computable set of topological invariants, which is complete and allows the topological consistency of an arbitrary simplification to be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawala, M. and Stolte, C., 2001. Rendering effective route maps: improving usability through generalization. In: SIGGRAPH New York: ACM, pp. 241–249.

    Google Scholar 

  • Clementini, E. and Di Felice, P., 1998. Topological invariants for lines. IEEE Transactions on Knowledge and Data Engineering, 10 (1), pp. 38 –54.

    Google Scholar 

  • Corcoran, P., Mooney, P., and Winstanley, A., 2011. Planar and non-planar topologically consistent vector map simplification. International Journal of Geographical Information Science, 25 (10), pp. 1659–1680.

    Google Scholar 

  • de Berg, M., van Kreveld, M. and Schirra, S., 1998. Topologically correct subdivision simplication using the bandwidth criterion. Cartography and Geographic Information Science, 25 (4), pp. 243-257.

    Google Scholar 

  • Douglas, D. and Peucker, T., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10 (2), pp. 112–122.

    Google Scholar 

  • Egenhofer, M.J., 1991. Reasoning about Binary Topological Relations. In: Proceedings of the Second International Symposium on Advances in Spatial Databases, SSD’91 London, UK: Springer-Verlag, pp. 143–160.

    Google Scholar 

  • Jones, C.B., 1997. Geographical information systems and computer cartography. Prentice Hall.

    Google Scholar 

  • Kopf, J., et al., 2010. Automatic generation of destination maps. ACM Transactions on Graphics, 29 (6), pp. 1–12.

    Google Scholar 

  • Kulik, L., Duckham, M., and Egenhofer, M., 2005. Ontology-Driven Map Generalization. Journal of Visual Languages and Computing, 16 (3), pp. 245–267.

    Google Scholar 

  • Latecki, L.J. and Lakmper, R., 1999. Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution. Computer Vision and Image Understanding, 73 (3), pp. 441–454.

    Google Scholar 

  • Lonergan, M. and Jones, C.B., 2001. An Iterative Displacement Method for Conflict Resolution in Map Generalization. Algorithmica, 30, pp. 287–301.

    Google Scholar 

  • Mortenson, M., 2007. Geometric transformations for 3d modeling. 2nd New York, NY, USA: Industrial Press, Inc.

    Google Scholar 

  • Nollenburg, M.; Wolff, A., 2011. Drawing and Labeling High-Quality Metro Maps by Mixed-Integer Programming. IEEE Transactions on Visualization and Computer Graphics, 17 (5), pp. 626 – 641.

    Google Scholar 

  • Saalfeld, A., 1999. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm. Cartography and Geographic Information Science, 26 (1), pp. 7–18.

    Google Scholar 

  • Stott, J., et al., 2011. Automatic Metro Map Layout Using Multicriteria Optimization. Visualization and Computer Graphics, IEEE Transactions on, 17 (1), pp. 101–114.

    Google Scholar 

  • Weibel, R., 1996. A Typology of Constraints to Line Simplification. In: Advances in GIS Research II (Proceedings 7th International Symposium on Spatial Data Handling), 533–546 London: Taylor & Francis.

    Google Scholar 

  • Weihua, D., 2008. Generating On-Demand Web Mapping through Progressive Generalization. In: Education Technology and Training, Vol. 2, Dec, pp.163–166.

    Google Scholar 

  • Wilson, D., Bertolotto, M., and Weakliam, J., 2010. Personalizing map content to improve task completion efficiency. International Journal of Geographical Information Science, 24 (5), pp. 741–760.

    Google Scholar 

  • Wise, S., 2002. GIS Basics. CRC Press.

    Google Scholar 

Download references

Acknowledgments

Research presented in this paper was funded by the Irish Research Council for Science Engineering and Technology (IRCSET) EMPOWER program, the Irish Environmental Protection Agency (EPA) STRIVE programme (Grant 2008-FS-DM-14-S4) and a Strategic Research Cluster Grant (07/SRC/I1168) from Science Foundation Ireland under the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padraig Corcoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corcoran, P., Mooney, P., Bertolotto, M. (2012). Line Simplification in the Presence of Non-Planar Topological Relationships. In: Gensel, J., Josselin, D., Vandenbroucke, D. (eds) Bridging the Geographic Information Sciences. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29063-3_2

Download citation

Publish with us

Policies and ethics