Skip to main content

Cardiovascular Circuits and Digestive Function of Intermittent-Feeding Sauropsids

Abstract

Turtles, squamates, and crocodiles show remarkable morphological and physiological plasticity of their gastrointestinal tract in response to feeding. They also show a remarkably complicated and diverse morphology of their cardiovascular circuitry and cardiovascular functioning. In particular, many species have the option to bypass the pulmonary (or the systemic) circulation by redirecting blood into the systemic (or pulmonary) circulation, respectively. In this chapter we review the evidence that supports a functional integration of the gastrointestinal system with the cardiovascular system. In particular the morphology of the cardiovascular circuits suggests that both systems are tightly integrated. The main hypotheses about a functional integration are: (1) increased blood flow to the gastrointestinal system may provision more blood for transport, and also possibly drives inflation of the gastrointestinal tract after feeding. (2) Central redirection of blood may play a role for digestion by balancing the blood pH during the alkaline tide. (3) The anatomy of the vascular circuits suggests that CO2-rich blood is directed to the gastrointestinal tract to facilitate gastric acid production. We critically review the evidence and support for each of these ideas and outline avenues for future research that may ultimately help to clarify many of the contrasting ideas discussed in the literature. We conclude that the timing of shunting during digestion has not been fully explored; many important quantitative data (e.g., ventricle and blood volume, shunting volume) are completely missing; experimental studies are dominated by highly invasive studies with unclear effects on normal physiology; capillary filtration rate and the role of the lymphatic system have been neglected; and finally, volume compensation and compensatory shunts have largely been neglected.

Keywords

  • Pulmonary Circulation
  • Increase Blood Flow
  • Dorsal Aorta
  • Digestive Function
  • Blood Flow Volume

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-29056-5_9
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-29056-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4

References

  • Altmann GG (1972) Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am J Anat 133(4):391–400

    PubMed  CAS  CrossRef  Google Scholar 

  • Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW (2005) Physiology: postprandial cardiac hypertrophy in pythons. Nature 434(7029):37–38

    PubMed  CAS  CrossRef  Google Scholar 

  • Andrade DV, De Toledo LF, Abe AS, Wang T (2004) Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. J Exp Biol 207(8):1379–1385

    PubMed  CAS  CrossRef  Google Scholar 

  • Anton DT, Read MA (2001) Frequency of foraging by gravid green turtles (Chelonia mydas) at Raine Island, Great Barrier Reef. J Herpetol 35(3):500–503

    CrossRef  Google Scholar 

  • Axelsson M (2001) The crocodilian heart; more controlled than we thought? Exp Physiol 86(6):785–789

    PubMed  CAS  CrossRef  Google Scholar 

  • Axelsson M, Franklin CE (1997) From anatomy to angioscopy: 164 years of crocodilian cardiovascular research, recent advances, and speculations. Comp Biochem Physiol A 118(1):51–62

    CrossRef  Google Scholar 

  • Axelsson M, Franklin CE (2001) The calibre of the foramen of Panizza in Crocodylus porosus is variable and under adrenergic control. J Comp Physiol B 171(4):341–346

    PubMed  CAS  CrossRef  Google Scholar 

  • Axelsson M, Fritsche R, Holmgren S, Grove DJ, Nilsson S (1991) Gut blood flow in the estuarine crocodile, Crocodylus porosus. Acta Physiol Scand 142(4):509–516

    PubMed  CAS  CrossRef  Google Scholar 

  • Axelsson M, Franklin C, Ouml Fman CL, Nilsson S, Grigg G (1996) Dynamic anatomical study of cardiac shunting in crocodiles using high-resolution angioscopy. J Exp Biol 199(Pt 2):359–365

    PubMed  Google Scholar 

  • Barboza PS (2009) Integrative wildlife nutrition, 1st edn. Springer, Berlin

    CrossRef  Google Scholar 

  • Barboza PS, Hume ID (2006) Physiology of intermittent feeding: Integrating responses of vertebrates to nutritional deficit and excess. Physiol Biochem Zool 79(2):250–264

    PubMed  CrossRef  Google Scholar 

  • Bennett AF (1994) Exercise performance of reptiles. Adv Vet Sci Comp Med 38B:113–138

    PubMed  CAS  Google Scholar 

  • Bennett AF, Licht P (1972) Anaerobic metabolism during activity in lizards. J Comp Physiol A 81(3):277–288

    CrossRef  Google Scholar 

  • Bennett AF, Dawson WR, Bartholomew GA (1975) Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J Comp Physiol B 100(4):317–329

    CAS  CrossRef  Google Scholar 

  • Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Fritsché R, Donnet A, Schiffrin EJ, Perruisseau G, Ballèvre O (1999) Food deprivation and refeeding influence growth, nutrient retention and functional recovery of rats. J Nutr 129(7):1340–1346

    PubMed  CAS  Google Scholar 

  • Buschmann RJ, Manke DJ (1981a) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. I. Fasted hamster. J Ultrastruct Res 76(1):1–14

    PubMed  CAS  CrossRef  Google Scholar 

  • Buschmann RJ, Manke DJ (1981b) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. II. Lipid-fed hamster. J Ultrastruct Res 76(1):15–26

    PubMed  CAS  CrossRef  Google Scholar 

  • Busk M, Overgaard J, Hicks J, Bennett A, Wang T (2000) Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis. J Exp Biol 203(20):3117–3124

    PubMed  CAS  Google Scholar 

  • Carr A, Ross P, Carr S (1974) Internesting behavior of the green turtle, Chelonia mydas, at a mid-ocean island breeding ground. Copeia 3:703–706

    CrossRef  Google Scholar 

  • Coulson RA, Hernandez T, Dessauer HC (1950) Alkaline tide in alligators. Soc Exp Biol Med 74:866–869

    CAS  Google Scholar 

  • Cramp RL, Franklin CE (2005) Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol A Mol Integr Physiol 142(4):451–460

    PubMed  CrossRef  Google Scholar 

  • Cramp RL, Franklin CE, Meyer EA (2005) The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog, Cyclorana alboguttata. Acta Zool 86(1):13–24

    CrossRef  Google Scholar 

  • Cramp RL, Kayes SM, Meyer EA, Franklin CE (2009) Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata. J Exp Biol 212(22):3656–3663

    PubMed  CAS  CrossRef  Google Scholar 

  • Dunel-Erb S, Chevalier C, Laurent P, Bach A, Decrock F, Le Maho Y (2001) Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol A 129(4):933–947

    CAS  CrossRef  Google Scholar 

  • Farmer CG (2011) On the evolution of arterial vascular patterns of tetrapods. J Morphol 272(11):1325–1341

    PubMed  CAS  CrossRef  Google Scholar 

  • Farmer CG, Uriona TJ, Olsen DB, Steenblik M, Sanders K (2008) The right-to-left shunt of crocodilians serves digestion. Physiol Biochem Zool 81(2):125–137

    PubMed  CAS  CrossRef  Google Scholar 

  • Farrell A, Gamperl A, ETB F (1998) Comparative aspects of heart morphology. In: Gans C and Gaunt AS (eds) Biology of the reptilia, vol 19. Society for the Study of Amphibians and Reptiles, Ithaka

    Google Scholar 

  • Gatten RE Jr (1984) Aerobic and anaerobic metabolism of freely-diving loggerhead musk turtles (Sternotherus minor). Herpetologica 40(1):1–7

    Google Scholar 

  • Gaucher L, Vidal N, D’Anatro A, Naya DE (2011) Digestive flexibility during fasting in the characid fish Hyphessobrycon luetkenii. J Morphol 273:49–56. doi:10.1002/jmor.11005

    PubMed  CrossRef  Google Scholar 

  • Gegenbaur C (1901) Vergleichende Anatomie der Wirbelthiere mit Berücksichtigung der Wirbellosen, Band 2. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Greenfield LJ, Morrow AG (1961) The cardiovascular hemodynamics of crocodilia. J Surg Res 1(2):97–103

    PubMed  CAS  CrossRef  Google Scholar 

  • Grigg GC, Johansen K (1987) Cardiovascular dynamics in Crocodylus porosus breathing air and during voluntary aerobic dives. J Comp Phys B 157(3):381–392

    CrossRef  Google Scholar 

  • Hafferl A (1933) Handbuch der vergleichenden Anatomie der Wirbeltiere, Bd. VI. Urban und Schwarzenberg, Berlin

    Google Scholar 

  • Hicks JW, Bennett AF (2004) Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir Physiol Neurobiol 144(2–3):215–224

    PubMed  CrossRef  Google Scholar 

  • Hicks JW, Wang T (1996) Functional role of cardiac shunts in reptiles. J Exp Zool 275(2–3):204–216

    CrossRef  Google Scholar 

  • Hicks JW, Wang T, Bennett AF (2000) Patterns of cardiovascular and ventilatory response to elevated metabolic states in the lizard Varanus exanthematicus. J Exp Biol 203(Pt 16):2437–2445

    PubMed  CAS  Google Scholar 

  • Hillman SS, Hedrick MS, Drewes RC, Withers PC (2010) Lymph flux rates from various lymph sacs in the cane toad Rhinella marina: an experimental evaluation of the roles of compliance, skeletal muscles and the lungs in the movement of lymph. J Exp Biol 213(18):3161–3166

    PubMed  CrossRef  Google Scholar 

  • Hochstetter F (1898) Über die Arterien des Darmkanals der Saurier. Morphol Jb 26:213

    Google Scholar 

  • Hofmann AF (2010) Overview of bile secretion. Compr Physiol :549–566. doi:10.1002/cphy.cp060328

  • Iwakiri R, Gotoh Y, Noda T, Sugihara H, Fujimoto K, Fuseler J, Aw T (2001) Programmed cell death in rat intestine: Effect of feeding and fasting. Scand J Gastroenterol 36(1):39–47

    PubMed  CAS  CrossRef  Google Scholar 

  • Jensen B, Nielsen JM, Axelsson M, Pedersen M, Lofman C, Wang T (2010a) How the python heart separates pulmonary and systemic blood pressures and blood flows. J Exp Biol 213(Pt 10):1611–1617

    PubMed  CrossRef  Google Scholar 

  • Jensen B, Nyengaard JR, Pedersen M, Wang T (2010b) Anatomy of the python heart. Anat Sci Int 85(4):194–203

    PubMed  CrossRef  Google Scholar 

  • Jones DR, Shelton G (1993) The physiology of the alligator heart—left aortic flow patterns and right-to-left shunts. J Exp Biol 176:247–269

    Google Scholar 

  • Jones D, Round J, De Haan A (2004) Skeletal muscle—from molecules to movement. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Karasov WH, Pinshow B, Starck JM, Afik D (2004) Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): a comparison among fed, fasted, food-restricted, and refed birds. Physiol Biochem Zool 77(1):149–160

    PubMed  CrossRef  Google Scholar 

  • Kardong K (1995) Vertebrates: comparative anatomy, function, evolution. Wm. C. Brown Publishers, Dubuque

    Google Scholar 

  • Karila P, Axelsson M, Franklin CE, Fritsche R, Gibbins IL, Grigg GC, Nilsson S, Holmgren S (1995) Neuropeptide immunoreactivity and co-existence in cardiovascular nerves and autonomic ganglia of the estuarine crocodile, Crocodylus porosus, and cardiovascular effects of neuropeptides. Regul Pept 58(1–2):25–39

    PubMed  CAS  CrossRef  Google Scholar 

  • Le Maho Y, Delclitte P, Chatonnet J (1976) Thermoregulation in fasting emperor penguins under natural conditions. Am J Physiol 231(3):913–922

    PubMed  Google Scholar 

  • Le Maho Y, Delclitte P, Groscolas R (1977) Body temperature regulation of the emperor penguin (Aptenodytes forsteri) during physiological fasting. In: Llano GA (ed) Adaptations within the Antarctic ecosystems. Smithsonian Institution, Washington, pp 501–509

    Google Scholar 

  • Lignot JH, Secor SM (2002) Postprandial morphological changes of the intestinal villi and enteropytes in the Burmese python. ICB 42(6):1267

    Google Scholar 

  • Lignot JH, Helmstetter C, Secor SM (2005) Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Comp Biochem Physiol A 141(3):280–291

    CrossRef  Google Scholar 

  • Lindinger MI, Kowalchuk JM, Heigenhauser GJF (2005) Applying physicochemical principles to skeletal muscle acid–base status. A J Physiol 289(3):R891–R894

    CAS  CrossRef  Google Scholar 

  • Mathur PN (1944) The anatomy of the reptilian heart. Part I. Varanus monitor (Linné). Proc Indian Acad Sci B 20:1–29

    Google Scholar 

  • Mathur PN (1946) The anatomy of the reptilian heart. II. Serpentes, Testudinata and Loricata. Proc Indian Acad Sci 20:1–29

    Google Scholar 

  • McCue MD (2010) Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156(1):1–18

    Google Scholar 

  • McCue MD, Bennett AF, Hicks JW (2005) The effect of meal composition on specific dynamic action in burmese pythons (Python molurus). Physiol Biochem Zool 78(2):182–192

    PubMed  CAS  CrossRef  Google Scholar 

  • Mooseker MS, Pollard TD, Wharton KA (1982) Nucleated polymerization of actin from the membrane-associated ends of microvillar filaments in the intestinal brush border. J Cell Biol 95(1):223–233

    PubMed  CAS  CrossRef  Google Scholar 

  • Mortimer JA (1981) The feeding ecology of the west caribbean green turtle (Chelonia mydas) in Nicaragua. Biotropica 13(1):49–58

    CrossRef  Google Scholar 

  • Niv Y, Fraser GM (2002) The alkaline tide phenomenon. J Clin Gastroenterol 35(1):5–8

    PubMed  CAS  CrossRef  Google Scholar 

  • Panizza B (1833) Sulla struttura del cuore e sulla circulatione del sangue del Crocodilus lucius. Biblioth ital LXX 70:87–91

    Google Scholar 

  • Penzlin H (1991) Lehrbuch der Tierphysiologie, 5th edn. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Piersma T (1998) Phenotypic flexibility during migration: optimization of organ size contingent on the risks and rewards of fueling and flight? J Avian Biol 29(4):511–520

    CrossRef  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evolut 18(5):228–233

    CrossRef  Google Scholar 

  • Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evolut 12(4):134–138

    CAS  CrossRef  Google Scholar 

  • Raab S, Leiser R, Kemmer H, Claus R (1998) Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Metabolism 47(9):1105–1111

    PubMed  CAS  CrossRef  Google Scholar 

  • Ricklefs RE (1976) Growth rates of birds in the humid new world tropics. Ibis 118(2):179–207

    CrossRef  Google Scholar 

  • Ricklefs RE, White SC, Cullen J (1980) Energetics of postnatal growth in Leach’s storm-petrel. Auk 97(3):566–575

    Google Scholar 

  • Riquelme CA, Magida JA, Harrison BC, Wall CE, Marr TG, Secor SM, Leinwand LA (2011) Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334(6055):528–531. doi:10.1126/science.1210558

    PubMed  CAS  CrossRef  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol 287(3):R502–R516

    CAS  CrossRef  Google Scholar 

  • Ruben JA (1976) Aerobic and anaerobic metabolism during activity in snakes. J Comp Phys B 109(2):147–157

    CAS  CrossRef  Google Scholar 

  • Schmidt R, Thews G (1980) Physiologie des Menschen, 20th edn. Springer, Berlin

    Google Scholar 

  • Secor SM (2001) Regulation of digestive performance: a proposed adaptive response. Comp Biochem Physiol A 128(3):565–577

    CAS  CrossRef  Google Scholar 

  • Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus. J Exp Biol 206(10):1621–1630

    PubMed  CrossRef  Google Scholar 

  • Secor SM (2005) Evolutionary and cellular mechanisms regulating intestinal performance of amphibians and reptiles. ICB 45(2):282–294

    Google Scholar 

  • Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211(24):3767–3774

    PubMed  CrossRef  Google Scholar 

  • Secor SM, Lignot JH (2005) Plasticity of intestinal morphology underlies the regulation of nutrient uptake for the Burmese python. Faseb J 19(4):A751

    Google Scholar 

  • Secor SM, White SE (2004) Effects of exercise, digestion, and body mass on cardiac output and patterns of blood flow for the Burmese python (Python molurus). ICB 44(6):639

    Google Scholar 

  • Secor SM, White SE (2006) Cardiovascular response to digestion and exercise in the Burmese python. ICB 46:E247

    Google Scholar 

  • Secor SM, Stein ED, Diamond J (1994) Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266(4 pt 1):G695–G705

    PubMed  CAS  Google Scholar 

  • Secor SM, Hicks JW, Bennett AF (2000) Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol 203(Pt 16):2447–2454

    PubMed  CAS  Google Scholar 

  • Soderstrom V, Nilsson GE, Renshaw GM, Franklin CE (1999) Hypoxia stimulates cerebral blood flow in the estuarine crocodile (Crocodylus porosus). Neurosci Lett 267(1):1–4

    PubMed  CAS  CrossRef  Google Scholar 

  • Starck JM (1996) Intestinal growth in altricial European starling (Sturnus vulgaris) and precocial Japanese quail (Coturnix coturnix japonica). A morphometric and cytokinetic study. Acta Anat 156(4):289–306

    PubMed  CAS  CrossRef  Google Scholar 

  • Starck JM (2005) Structural flexibility of the digestive system of tetrapods—Patterns and processes at the cellular and tissue level. In: Starck Wang (ed) Physiological and ecological adaptation to feeding in vertebrates. Science Publishers, Enfield, pp 175–200

    Google Scholar 

  • Starck JM (2007) Functional morphology and patterns of blood flow in the heart of snakes and crocodiles. J Morphol 268(12):1137

    Google Scholar 

  • Starck JM (2009) Functional morphology and patterns of blood flow in the heart of Python regius. J Morphol 270:673–687

    PubMed  CrossRef  Google Scholar 

  • Starck JM, Beese K (2001) Structural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204(Pt 2):325–335

    PubMed  CAS  Google Scholar 

  • Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205(Pt 10):1377–1388

    PubMed  Google Scholar 

  • Starck JM, Wimmer C (2005) Patterns of blood flow during the postprandial response in ball pythons, Python regius. J Exp Biol 208(Pt 5):881–889

    PubMed  CrossRef  Google Scholar 

  • Starck JM, Cruz-Neto AP, Abe AS (2007) Physiological and morphological responses to feeding in broad-nosed caiman (Caiman latirostris). J Exp Biol 210(12):2033–2045

    PubMed  CrossRef  Google Scholar 

  • Wang T, Busk H, Overgaard J (2001) The respiratory consequences of feeding in amphibians and reptiles. Comp Biochem Physiol A 128(3):535–549

    CAS  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68(1):223–251

    PubMed  CrossRef  Google Scholar 

  • Webb GJW (1979) Comparative cardiac anatomy of the reptilia. III. Heart of crocodilians and a hypothesis on the completion of the inter-ventricular septum of crocodilians and birds. J Morphol 161(2):221–240

    CrossRef  Google Scholar 

  • Webb G, Heatwole H, De Bavay J (1971) Comparative cardiac anatomy of the reptilia. I. The chambers and septa of the varanid ventricle. J Morphol 134(3):335–350

    PubMed  CAS  CrossRef  Google Scholar 

  • Webb GJW, Heatwole H, de Bavay J (1974) Comparative cardiac anatomy of the reptilia. II. A critique of the literature on the Squamata and Rhynchocephalia. J Morphol 142(1):1–20

    PubMed  CAS  CrossRef  Google Scholar 

  • White FN (1959) Circulation in the reptilian heart (squamata). Anat Rec 135(2):129–134

    PubMed  CAS  CrossRef  Google Scholar 

  • White FN (1968) Functional anatomy of heart in reptiles. Amer Zool 8(2):211–219

    CAS  Google Scholar 

  • White FN (1969) Redistribution of cardiac output in the diving alligator. Copeia 1969(3):567–570

    CrossRef  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor of this volume for his invitation to contribute a chapter. We would also like to express our grateful thanks to Colleen Farmer, Jeanette Wyneken and Kenneth Kardong, Tobias Wang, and Jim Hicks for stimulating discussions during the past years. Many of their thoughts have contributed directly or indirectly to the ideas outlined in this chapter. RC is supported by a fellowship from Elitenetzwerk Bayern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Starck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campen, R., Starck, M. (2012). Cardiovascular Circuits and Digestive Function of Intermittent-Feeding Sauropsids. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_9

Download citation