Advertisement

Cardiovascular Circuits and Digestive Function of Intermittent-Feeding Sauropsids

  • Rike Campen
  • Matthias Starck
Chapter

Abstract

Turtles, squamates, and crocodiles show remarkable morphological and physiological plasticity of their gastrointestinal tract in response to feeding. They also show a remarkably complicated and diverse morphology of their cardiovascular circuitry and cardiovascular functioning. In particular, many species have the option to bypass the pulmonary (or the systemic) circulation by redirecting blood into the systemic (or pulmonary) circulation, respectively. In this chapter we review the evidence that supports a functional integration of the gastrointestinal system with the cardiovascular system. In particular the morphology of the cardiovascular circuits suggests that both systems are tightly integrated. The main hypotheses about a functional integration are: (1) increased blood flow to the gastrointestinal system may provision more blood for transport, and also possibly drives inflation of the gastrointestinal tract after feeding. (2) Central redirection of blood may play a role for digestion by balancing the blood pH during the alkaline tide. (3) The anatomy of the vascular circuits suggests that CO2-rich blood is directed to the gastrointestinal tract to facilitate gastric acid production. We critically review the evidence and support for each of these ideas and outline avenues for future research that may ultimately help to clarify many of the contrasting ideas discussed in the literature. We conclude that the timing of shunting during digestion has not been fully explored; many important quantitative data (e.g., ventricle and blood volume, shunting volume) are completely missing; experimental studies are dominated by highly invasive studies with unclear effects on normal physiology; capillary filtration rate and the role of the lymphatic system have been neglected; and finally, volume compensation and compensatory shunts have largely been neglected.

Keywords

Pulmonary Circulation Increase Blood Flow Dorsal Aorta Digestive Function Blood Flow Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the editor of this volume for his invitation to contribute a chapter. We would also like to express our grateful thanks to Colleen Farmer, Jeanette Wyneken and Kenneth Kardong, Tobias Wang, and Jim Hicks for stimulating discussions during the past years. Many of their thoughts have contributed directly or indirectly to the ideas outlined in this chapter. RC is supported by a fellowship from Elitenetzwerk Bayern.

References

  1. Altmann GG (1972) Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am J Anat 133(4):391–400PubMedCrossRefGoogle Scholar
  2. Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW (2005) Physiology: postprandial cardiac hypertrophy in pythons. Nature 434(7029):37–38PubMedCrossRefGoogle Scholar
  3. Andrade DV, De Toledo LF, Abe AS, Wang T (2004) Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. J Exp Biol 207(8):1379–1385PubMedCrossRefGoogle Scholar
  4. Anton DT, Read MA (2001) Frequency of foraging by gravid green turtles (Chelonia mydas) at Raine Island, Great Barrier Reef. J Herpetol 35(3):500–503CrossRefGoogle Scholar
  5. Axelsson M (2001) The crocodilian heart; more controlled than we thought? Exp Physiol 86(6):785–789PubMedCrossRefGoogle Scholar
  6. Axelsson M, Franklin CE (1997) From anatomy to angioscopy: 164 years of crocodilian cardiovascular research, recent advances, and speculations. Comp Biochem Physiol A 118(1):51–62CrossRefGoogle Scholar
  7. Axelsson M, Franklin CE (2001) The calibre of the foramen of Panizza in Crocodylus porosus is variable and under adrenergic control. J Comp Physiol B 171(4):341–346PubMedCrossRefGoogle Scholar
  8. Axelsson M, Fritsche R, Holmgren S, Grove DJ, Nilsson S (1991) Gut blood flow in the estuarine crocodile, Crocodylus porosus. Acta Physiol Scand 142(4):509–516PubMedCrossRefGoogle Scholar
  9. Axelsson M, Franklin C, Ouml Fman CL, Nilsson S, Grigg G (1996) Dynamic anatomical study of cardiac shunting in crocodiles using high-resolution angioscopy. J Exp Biol 199(Pt 2):359–365PubMedGoogle Scholar
  10. Barboza PS (2009) Integrative wildlife nutrition, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  11. Barboza PS, Hume ID (2006) Physiology of intermittent feeding: Integrating responses of vertebrates to nutritional deficit and excess. Physiol Biochem Zool 79(2):250–264PubMedCrossRefGoogle Scholar
  12. Bennett AF (1994) Exercise performance of reptiles. Adv Vet Sci Comp Med 38B:113–138PubMedGoogle Scholar
  13. Bennett AF, Licht P (1972) Anaerobic metabolism during activity in lizards. J Comp Physiol A 81(3):277–288CrossRefGoogle Scholar
  14. Bennett AF, Dawson WR, Bartholomew GA (1975) Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J Comp Physiol B 100(4):317–329CrossRefGoogle Scholar
  15. Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Fritsché R, Donnet A, Schiffrin EJ, Perruisseau G, Ballèvre O (1999) Food deprivation and refeeding influence growth, nutrient retention and functional recovery of rats. J Nutr 129(7):1340–1346PubMedGoogle Scholar
  16. Buschmann RJ, Manke DJ (1981a) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. I. Fasted hamster. J Ultrastruct Res 76(1):1–14PubMedCrossRefGoogle Scholar
  17. Buschmann RJ, Manke DJ (1981b) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. II. Lipid-fed hamster. J Ultrastruct Res 76(1):15–26PubMedCrossRefGoogle Scholar
  18. Busk M, Overgaard J, Hicks J, Bennett A, Wang T (2000) Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis. J Exp Biol 203(20):3117–3124PubMedGoogle Scholar
  19. Carr A, Ross P, Carr S (1974) Internesting behavior of the green turtle, Chelonia mydas, at a mid-ocean island breeding ground. Copeia 3:703–706CrossRefGoogle Scholar
  20. Coulson RA, Hernandez T, Dessauer HC (1950) Alkaline tide in alligators. Soc Exp Biol Med 74:866–869Google Scholar
  21. Cramp RL, Franklin CE (2005) Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol A Mol Integr Physiol 142(4):451–460PubMedCrossRefGoogle Scholar
  22. Cramp RL, Franklin CE, Meyer EA (2005) The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog, Cyclorana alboguttata. Acta Zool 86(1):13–24CrossRefGoogle Scholar
  23. Cramp RL, Kayes SM, Meyer EA, Franklin CE (2009) Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata. J Exp Biol 212(22):3656–3663PubMedCrossRefGoogle Scholar
  24. Dunel-Erb S, Chevalier C, Laurent P, Bach A, Decrock F, Le Maho Y (2001) Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol A 129(4):933–947CrossRefGoogle Scholar
  25. Farmer CG (2011) On the evolution of arterial vascular patterns of tetrapods. J Morphol 272(11):1325–1341PubMedCrossRefGoogle Scholar
  26. Farmer CG, Uriona TJ, Olsen DB, Steenblik M, Sanders K (2008) The right-to-left shunt of crocodilians serves digestion. Physiol Biochem Zool 81(2):125–137PubMedCrossRefGoogle Scholar
  27. Farrell A, Gamperl A, ETB F (1998) Comparative aspects of heart morphology. In: Gans C and Gaunt AS (eds) Biology of the reptilia, vol 19. Society for the Study of Amphibians and Reptiles, IthakaGoogle Scholar
  28. Gatten RE Jr (1984) Aerobic and anaerobic metabolism of freely-diving loggerhead musk turtles (Sternotherus minor). Herpetologica 40(1):1–7Google Scholar
  29. Gaucher L, Vidal N, D’Anatro A, Naya DE (2011) Digestive flexibility during fasting in the characid fish Hyphessobrycon luetkenii. J Morphol 273:49–56. doi: 10.1002/jmor.11005 PubMedCrossRefGoogle Scholar
  30. Gegenbaur C (1901) Vergleichende Anatomie der Wirbelthiere mit Berücksichtigung der Wirbellosen, Band 2. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  31. Greenfield LJ, Morrow AG (1961) The cardiovascular hemodynamics of crocodilia. J Surg Res 1(2):97–103PubMedCrossRefGoogle Scholar
  32. Grigg GC, Johansen K (1987) Cardiovascular dynamics in Crocodylus porosus breathing air and during voluntary aerobic dives. J Comp Phys B 157(3):381–392CrossRefGoogle Scholar
  33. Hafferl A (1933) Handbuch der vergleichenden Anatomie der Wirbeltiere, Bd. VI. Urban und Schwarzenberg, BerlinGoogle Scholar
  34. Hicks JW, Bennett AF (2004) Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir Physiol Neurobiol 144(2–3):215–224PubMedCrossRefGoogle Scholar
  35. Hicks JW, Wang T (1996) Functional role of cardiac shunts in reptiles. J Exp Zool 275(2–3):204–216CrossRefGoogle Scholar
  36. Hicks JW, Wang T, Bennett AF (2000) Patterns of cardiovascular and ventilatory response to elevated metabolic states in the lizard Varanus exanthematicus. J Exp Biol 203(Pt 16):2437–2445PubMedGoogle Scholar
  37. Hillman SS, Hedrick MS, Drewes RC, Withers PC (2010) Lymph flux rates from various lymph sacs in the cane toad Rhinella marina: an experimental evaluation of the roles of compliance, skeletal muscles and the lungs in the movement of lymph. J Exp Biol 213(18):3161–3166PubMedCrossRefGoogle Scholar
  38. Hochstetter F (1898) Über die Arterien des Darmkanals der Saurier. Morphol Jb 26:213Google Scholar
  39. Hofmann AF (2010) Overview of bile secretion. Compr Physiol :549–566. doi: 10.1002/cphy.cp060328
  40. Iwakiri R, Gotoh Y, Noda T, Sugihara H, Fujimoto K, Fuseler J, Aw T (2001) Programmed cell death in rat intestine: Effect of feeding and fasting. Scand J Gastroenterol 36(1):39–47PubMedCrossRefGoogle Scholar
  41. Jensen B, Nielsen JM, Axelsson M, Pedersen M, Lofman C, Wang T (2010a) How the python heart separates pulmonary and systemic blood pressures and blood flows. J Exp Biol 213(Pt 10):1611–1617PubMedCrossRefGoogle Scholar
  42. Jensen B, Nyengaard JR, Pedersen M, Wang T (2010b) Anatomy of the python heart. Anat Sci Int 85(4):194–203PubMedCrossRefGoogle Scholar
  43. Jones DR, Shelton G (1993) The physiology of the alligator heart—left aortic flow patterns and right-to-left shunts. J Exp Biol 176:247–269Google Scholar
  44. Jones D, Round J, De Haan A (2004) Skeletal muscle—from molecules to movement. Churchill Livingstone, PhiladelphiaGoogle Scholar
  45. Karasov WH, Pinshow B, Starck JM, Afik D (2004) Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): a comparison among fed, fasted, food-restricted, and refed birds. Physiol Biochem Zool 77(1):149–160PubMedCrossRefGoogle Scholar
  46. Kardong K (1995) Vertebrates: comparative anatomy, function, evolution. Wm. C. Brown Publishers, DubuqueGoogle Scholar
  47. Karila P, Axelsson M, Franklin CE, Fritsche R, Gibbins IL, Grigg GC, Nilsson S, Holmgren S (1995) Neuropeptide immunoreactivity and co-existence in cardiovascular nerves and autonomic ganglia of the estuarine crocodile, Crocodylus porosus, and cardiovascular effects of neuropeptides. Regul Pept 58(1–2):25–39PubMedCrossRefGoogle Scholar
  48. Le Maho Y, Delclitte P, Chatonnet J (1976) Thermoregulation in fasting emperor penguins under natural conditions. Am J Physiol 231(3):913–922PubMedGoogle Scholar
  49. Le Maho Y, Delclitte P, Groscolas R (1977) Body temperature regulation of the emperor penguin (Aptenodytes forsteri) during physiological fasting. In: Llano GA (ed) Adaptations within the Antarctic ecosystems. Smithsonian Institution, Washington, pp 501–509Google Scholar
  50. Lignot JH, Secor SM (2002) Postprandial morphological changes of the intestinal villi and enteropytes in the Burmese python. ICB 42(6):1267Google Scholar
  51. Lignot JH, Helmstetter C, Secor SM (2005) Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Comp Biochem Physiol A 141(3):280–291CrossRefGoogle Scholar
  52. Lindinger MI, Kowalchuk JM, Heigenhauser GJF (2005) Applying physicochemical principles to skeletal muscle acid–base status. A J Physiol 289(3):R891–R894CrossRefGoogle Scholar
  53. Mathur PN (1944) The anatomy of the reptilian heart. Part I. Varanus monitor (Linné). Proc Indian Acad Sci B 20:1–29Google Scholar
  54. Mathur PN (1946) The anatomy of the reptilian heart. II. Serpentes, Testudinata and Loricata. Proc Indian Acad Sci 20:1–29Google Scholar
  55. McCue MD (2010) Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156(1):1–18Google Scholar
  56. McCue MD, Bennett AF, Hicks JW (2005) The effect of meal composition on specific dynamic action in burmese pythons (Python molurus). Physiol Biochem Zool 78(2):182–192PubMedCrossRefGoogle Scholar
  57. Mooseker MS, Pollard TD, Wharton KA (1982) Nucleated polymerization of actin from the membrane-associated ends of microvillar filaments in the intestinal brush border. J Cell Biol 95(1):223–233PubMedCrossRefGoogle Scholar
  58. Mortimer JA (1981) The feeding ecology of the west caribbean green turtle (Chelonia mydas) in Nicaragua. Biotropica 13(1):49–58CrossRefGoogle Scholar
  59. Niv Y, Fraser GM (2002) The alkaline tide phenomenon. J Clin Gastroenterol 35(1):5–8PubMedCrossRefGoogle Scholar
  60. Panizza B (1833) Sulla struttura del cuore e sulla circulatione del sangue del Crocodilus lucius. Biblioth ital LXX 70:87–91Google Scholar
  61. Penzlin H (1991) Lehrbuch der Tierphysiologie, 5th edn. Gustav Fischer Verlag, JenaGoogle Scholar
  62. Piersma T (1998) Phenotypic flexibility during migration: optimization of organ size contingent on the risks and rewards of fueling and flight? J Avian Biol 29(4):511–520CrossRefGoogle Scholar
  63. Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evolut 18(5):228–233CrossRefGoogle Scholar
  64. Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evolut 12(4):134–138CrossRefGoogle Scholar
  65. Raab S, Leiser R, Kemmer H, Claus R (1998) Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Metabolism 47(9):1105–1111PubMedCrossRefGoogle Scholar
  66. Ricklefs RE (1976) Growth rates of birds in the humid new world tropics. Ibis 118(2):179–207CrossRefGoogle Scholar
  67. Ricklefs RE, White SC, Cullen J (1980) Energetics of postnatal growth in Leach’s storm-petrel. Auk 97(3):566–575Google Scholar
  68. Riquelme CA, Magida JA, Harrison BC, Wall CE, Marr TG, Secor SM, Leinwand LA (2011) Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334(6055):528–531. doi: 10.1126/science.1210558 PubMedCrossRefGoogle Scholar
  69. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol 287(3):R502–R516CrossRefGoogle Scholar
  70. Ruben JA (1976) Aerobic and anaerobic metabolism during activity in snakes. J Comp Phys B 109(2):147–157CrossRefGoogle Scholar
  71. Schmidt R, Thews G (1980) Physiologie des Menschen, 20th edn. Springer, BerlinGoogle Scholar
  72. Secor SM (2001) Regulation of digestive performance: a proposed adaptive response. Comp Biochem Physiol A 128(3):565–577CrossRefGoogle Scholar
  73. Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus. J Exp Biol 206(10):1621–1630PubMedCrossRefGoogle Scholar
  74. Secor SM (2005) Evolutionary and cellular mechanisms regulating intestinal performance of amphibians and reptiles. ICB 45(2):282–294Google Scholar
  75. Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211(24):3767–3774PubMedCrossRefGoogle Scholar
  76. Secor SM, Lignot JH (2005) Plasticity of intestinal morphology underlies the regulation of nutrient uptake for the Burmese python. Faseb J 19(4):A751Google Scholar
  77. Secor SM, White SE (2004) Effects of exercise, digestion, and body mass on cardiac output and patterns of blood flow for the Burmese python (Python molurus). ICB 44(6):639Google Scholar
  78. Secor SM, White SE (2006) Cardiovascular response to digestion and exercise in the Burmese python. ICB 46:E247Google Scholar
  79. Secor SM, Stein ED, Diamond J (1994) Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266(4 pt 1):G695–G705PubMedGoogle Scholar
  80. Secor SM, Hicks JW, Bennett AF (2000) Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol 203(Pt 16):2447–2454PubMedGoogle Scholar
  81. Soderstrom V, Nilsson GE, Renshaw GM, Franklin CE (1999) Hypoxia stimulates cerebral blood flow in the estuarine crocodile (Crocodylus porosus). Neurosci Lett 267(1):1–4PubMedCrossRefGoogle Scholar
  82. Starck JM (1996) Intestinal growth in altricial European starling (Sturnus vulgaris) and precocial Japanese quail (Coturnix coturnix japonica). A morphometric and cytokinetic study. Acta Anat 156(4):289–306PubMedCrossRefGoogle Scholar
  83. Starck JM (2005) Structural flexibility of the digestive system of tetrapods—Patterns and processes at the cellular and tissue level. In: Starck Wang (ed) Physiological and ecological adaptation to feeding in vertebrates. Science Publishers, Enfield, pp 175–200Google Scholar
  84. Starck JM (2007) Functional morphology and patterns of blood flow in the heart of snakes and crocodiles. J Morphol 268(12):1137Google Scholar
  85. Starck JM (2009) Functional morphology and patterns of blood flow in the heart of Python regius. J Morphol 270:673–687PubMedCrossRefGoogle Scholar
  86. Starck JM, Beese K (2001) Structural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204(Pt 2):325–335PubMedGoogle Scholar
  87. Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205(Pt 10):1377–1388PubMedGoogle Scholar
  88. Starck JM, Wimmer C (2005) Patterns of blood flow during the postprandial response in ball pythons, Python regius. J Exp Biol 208(Pt 5):881–889PubMedCrossRefGoogle Scholar
  89. Starck JM, Cruz-Neto AP, Abe AS (2007) Physiological and morphological responses to feeding in broad-nosed caiman (Caiman latirostris). J Exp Biol 210(12):2033–2045PubMedCrossRefGoogle Scholar
  90. Wang T, Busk H, Overgaard J (2001) The respiratory consequences of feeding in amphibians and reptiles. Comp Biochem Physiol A 128(3):535–549Google Scholar
  91. Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68(1):223–251PubMedCrossRefGoogle Scholar
  92. Webb GJW (1979) Comparative cardiac anatomy of the reptilia. III. Heart of crocodilians and a hypothesis on the completion of the inter-ventricular septum of crocodilians and birds. J Morphol 161(2):221–240CrossRefGoogle Scholar
  93. Webb G, Heatwole H, De Bavay J (1971) Comparative cardiac anatomy of the reptilia. I. The chambers and septa of the varanid ventricle. J Morphol 134(3):335–350PubMedCrossRefGoogle Scholar
  94. Webb GJW, Heatwole H, de Bavay J (1974) Comparative cardiac anatomy of the reptilia. II. A critique of the literature on the Squamata and Rhynchocephalia. J Morphol 142(1):1–20PubMedCrossRefGoogle Scholar
  95. White FN (1959) Circulation in the reptilian heart (squamata). Anat Rec 135(2):129–134PubMedCrossRefGoogle Scholar
  96. White FN (1968) Functional anatomy of heart in reptiles. Amer Zool 8(2):211–219Google Scholar
  97. White FN (1969) Redistribution of cardiac output in the diving alligator. Copeia 1969(3):567–570CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biology IILudwig-Maximilians-University MunichMunichGermany

Personalised recommendations