Skip to main content

The Use and Application of Stable Isotope Analysis to the Study of Starvation, Fasting, and Nutritional Stress in Animals

  • Chapter
  • First Online:
Comparative Physiology of Fasting, Starvation, and Food Limitation

Abstract

Maintaining adequate energy and mass balance is necessary to the survival and reproduction of any organism. However, nearly all organisms experience periods of catabolism, when insufficient food is being consumed and endogenous stores must be metabolized to provide the difference. The ubiquity of this phenomenon, perhaps an intuitive understanding of the threat that starvation poses to an individual’s survival, and the fact that many organisms seem to "voluntarily" enter long periods of catabolism (fasting) has caused great interest among physiologists to discover and understand the mechanisms organisms have evolved to survive such periods. In wild animals, merely detecting the existence and duration of periods of fasting or starvation can be difficult and much effort has been devoted toward establishing stable isotope analysis (SIA) as a tool for detecting and understanding the duration of catabolic states in wild animals. However, the results of these studies have been mixed. Increasingly, SIA is also being used to investigate the mechanisms organisms use to cope with periods of catabolism: how nutrients are routed, which are recycled, which are used for energy, and how that differs between different organs and organ systems. This chapter reviews the past and current applications of SIA for understanding fasting and starvation in animals and identifies areas where SIA may yet be applied to increase our understanding of fasting and starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol Oceanogr 45:601–607

    Article  CAS  Google Scholar 

  • Adamscewski JZ (1995) Digestion and body composition in muskoxen. University of Saskatchewan

    Google Scholar 

  • Alamaru A, Yam R, Shemesh A, Loya Y (2009) Trophic biology of Stylophora pistillata larvae: evidence from stable isotope analysis. Mar Ecol-Progr Ser 383:85–94

    Article  Google Scholar 

  • Ankney CD, MacInnes CD (1978) Nutrient reserves and reproductive performance of female Lesser Snow Geese. Auk 95:459–471

    Google Scholar 

  • Ayliffe LK, Cerling TE, Robinson T, West AG, Sponheimer M, Passey BH, Hammer J, Roeder B, Dearing MD, Ehleringer JR (2004) Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139:11–22

    Article  PubMed  CAS  Google Scholar 

  • Baker AL, Kotake AN, Schoeller DA (1983) Clinical utility of breath tests for the assessment of hepatic function. Semin Liver Dis 3:318–329

    Article  PubMed  CAS  Google Scholar 

  • Barboza PS, Parker KL (2006) Body protein stores and isotopic indicators of N balance in female reindeer (Rangifer tarandus) during winter. Physiol Biochem Zool 79:628–644

    Article  PubMed  CAS  Google Scholar 

  • Battley PF, Dietz MW, Piersma T, Tang S, Hulsman K (2000) Is long-distance bird flight equivalent to a high-energy fast? Body composition changes in migrated and fasted Great Knots. Physiol Biochem Zool 74(3):435–449

    Article  Google Scholar 

  • Bauchinger U, Kolb H, Afik D, Pinshow B, Biebach H (2009) Blackcap warblers maintain digestive efficiency by increasing digesta retention time on the first day of migratory stopover. Physiol Biochem Zool 82:541–548

    Article  PubMed  Google Scholar 

  • Bazar KA, Yun AJ, Lee PY (2005) “Starve a fever and feed a cold: feeding and anorexia may be adaptive behavioral modulators of autonomic and T helper balance”. Med Hypotheses 64:1080–1084

    Article  PubMed  Google Scholar 

  • Ben-David M, McColl CJ, Boonstra R, Karels TJ (1999) 15N signatures do not reflect body condition in Arctic ground squirrels. Can J Zool 77:1373–1378

    Google Scholar 

  • Best PB, Schell DM (1996) Stable isotopes in southern right whale (Eubalaena australis) baleen as indicators of seasonal movements, feeding and growth. Marine Biol 124:483–494

    Google Scholar 

  • Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Boag B, Neilson R, Scrimgeour CM (2006) The effect of starvation on the planarian Arthurdendyus triangulatus (Tricladida:Terricola) as measured by stable isotopes. Biol Fert Soils 43:267–270

    Article  Google Scholar 

  • Bonnet X, Bradshaw D, Shine R (1998) Capital versus income breeding: an ectothermic perspective. Oikos 83:333–342

    Article  Google Scholar 

  • Bottitta GE, Nol E, Gilchrist HG (2003) Effects of experimental manipulation of incubation length on behavior and body mass of Common Eiders in the Canadian Arctic. Waterbirds 26:100–107

    Article  Google Scholar 

  • Browne T, Lalas C, Mattern T, van Heezik Y (2011) Chick starvation in yellow-eyed penguins: evidence for poor diet quality and selective provisioning of chicks from conventional diet analysis and stable isotopes. Austral Ecol 36:99–108

    Article  Google Scholar 

  • Cahill GF (1970) Starvation in man. J Clin Endocrinol Metab 5:397−415

    Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582

    Article  PubMed  CAS  Google Scholar 

  • Castillo LP, Hatch KA (2007) Fasting increases δ15N-values in the uric acid of Anolis carolinensis and Uta stansburiana as measured by nondestructive sampling. Rapid Commun Mass Spectrom 21:4125–4128

    Article  PubMed  CAS  Google Scholar 

  • Chang HR, Bistrian B (1998) The role of cytokines in the catabolic consequences of infection and injury. J Parent Enter Nutr 22:156–166

    Article  CAS  Google Scholar 

  • Cherel Y, Robin J, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Bailleul F, Groscolas R (2005) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888

    Article  Google Scholar 

  • Chow S et al (2010) Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar Ecol-Progr Ser 402:233–238

    Article  CAS  Google Scholar 

  • Conti-Nibali S, Baldari S, Vitulo F, Sferlazzas C, Russo E, Tedeschi A, Bonanno N, Magazzu G (1990) The 14CO2 urea breath test for Helicobacter pylori infection. J Pediat Gastroenterol Nutr 11:284–285

    Article  CAS  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection, 6th edn. Project Gutenberg, London

    Google Scholar 

  • Delvin EE, Brazier JL, Deslandres C, Alvarez F, Russo P, Seidman E (1999) Accuracy of the (13C)-urea breath test in diagnosing Helicobacter pylori gastritis in pediatric patients. J Pediat Gastroenterol Nutr 28:59–62

    Article  CAS  Google Scholar 

  • Demmelmair H, Sauerwald T, Koletzko B, Richter T (1997) New insights into lipid and fatty acid metabolism via stable isotopes. Eur J Pediat 156(Suppl 1):S70–S74

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • Doi H, Kikuchi E, Takagi S, Shikano S (2007) Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis. Rapid Commun Mass Spectrom 21:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Doucett RR, Booth RK, Power G, McKinley RS (1999) Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Can J Fisheries Aquat Sci 56:2172–2180

    Article  Google Scholar 

  • Drent R, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  • Duchesne J, Lacroix M, Mosora F (1982) Use of the 13C/12C breath test to study sugar metabolism in animals and men. In: Schmidt HL, Forstel H, Heinzinger K (eds) Stable isotopes. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Focken U (2001) Stable isotopes in animal ecology: the effect of ration size on the trophic shift of C and N isotopes between feed and carcass. Isot Environ Health Stud 37:199–211

    Article  CAS  Google Scholar 

  • Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM (2004) Nitrogen balance and δ15N: why you’re not what you eat during pregnancy. Rapid Commun Mass Spectrom 18:2889–2896

    Article  PubMed  CAS  Google Scholar 

  • Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM (2005) Nitrogen balance and δ15N: why you’re not what you eat during nutritional stress. Rapid Commun Mass Spectrom 19:2497

    Article  PubMed  CAS  Google Scholar 

  • Gaebler OH, Vitti TG, Vukmirovich R (1966) Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Can J Biochem 44:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Gannes LZ, O’Brien D, Martinez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276

    Article  Google Scholar 

  • Gannes LZ, Martinez del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol A 119:725–737

    Article  CAS  Google Scholar 

  • Gauthier G, Bety J, Hobson KA (2003) Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology 84:3250–3264

    Article  Google Scholar 

  • Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138:175–183

    Article  PubMed  Google Scholar 

  • Gaye-Siessegger J, Focken U, Abel H, Becker K (2007) Starvation and low feeding levels result in an enrichment of 13C in lipids and 15N in protein of Nile tilapia Oreochromis niloticus L. J Fish Biol 71:90–100

    Article  CAS  Google Scholar 

  • Gil D, Heim C, Rocha M, Puerta M, Nagiulo M (2004) Negative effects of early developmental stress on yolk testosterone levels in a passerine bird. J Exp Biol 207:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Gloutney ML, Alisauskas RT, Afton AD, Slattery SM (2001) Foraging time and dietary intake by breeding Ross’s and Lesser Snow Geese. Oecologia 127:78–86

    Article  Google Scholar 

  • Gomez-Campos E, Borrell A, Aguilar A (2011) Nitrogen and carbon stable isotopes do not reflect nutritional condition in the striped dolphin. Rapid Commun Mass Spectrom 25:1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fisheries Aquat Sci 56:2203–2210

    Article  Google Scholar 

  • Gustine DD, Barboza PS, Lawler JP (2010) Dynamics of body protein and the implications for reproduction in captive muskoxen (Ovibos moschatus) during winter. Physiol Biochem Zool 83:687–697

    Article  PubMed  CAS  Google Scholar 

  • Gustine DO, Barboza PS, Adams LG, Farnell RG, Parker KL (2011) An isotopic approach to measuring nitrogen balance in carbou. J Wildl Manage 75:178–188

    Article  Google Scholar 

  • Habran S, Debier C, Crocker DE, Houser DS, Lepoint G, Bouquegneau JM, Das K (2010) Assessment of gestation, lactation and fasting on stable isotope ratios in northern elephant seals (Mirounga angustirostris). Mar Mammal Sci 26:880–895

    Article  Google Scholar 

  • Hare PE, Fogel ML, Stafford TWJ, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J Archaeol Sci 18:277–292

    Article  Google Scholar 

  • Hatch KA, Sacksteder KA, Treichel IW, Cook ME, Porter WP (1995) Early detection of catabolic state via change in 13C/12C ratios of blood proteins. Biochem Biophys Res Comm 212:719–726

    Article  PubMed  CAS  Google Scholar 

  • Hatch KA, Pinshow B, Speakman JR (2002a) Carbon isotope ratios in exhaled CO2 can be used to determine not just present, but also past diets in birds. J Comp Physiol B 172:263–268

    Article  PubMed  CAS  Google Scholar 

  • Hatch KA, Pinshow B, Speakman JR (2002b) The analysis of 13CO2/12CO2 ratios in exhaled CO2: its advantages and potential application to field research to infer diet, changes in diet over time, and substrate metabolism in birds. Integr Comp Biol 42:21–33

    Article  PubMed  Google Scholar 

  • Hatch KA, Crawford MA, Kunz AW, Thomsen SR, Eggett DL, Nelson ST, Roeder BL (2006) An objective means of diagnosing anorexia nervosa and bulimia nervosa using 15N/14N and 13C/12C ratios in hair. Rapid Comm Mass Spectrom 20:3367–3373

    Article  CAS  Google Scholar 

  • Haubert D, Langel R, Scheu S, Ruess L (2005) Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49:229–237

    Article  CAS  Google Scholar 

  • Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G, de Buyser K (1990) 13CO2 breath test to measure the hydrolysis of various starch formulations. Gut 31:175–178

    Article  PubMed  CAS  Google Scholar 

  • Hobson KA (2006) Using stable isotopes to quantitatively track endogenous and exogenous nutrient allocations to eggs of birds that travel to breed. Ardea 94:359–369

    Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95:388–394

    Article  Google Scholar 

  • Hobson KA, Thompson JE, Evans MR, Boyd S (2005) Tracing nutrient allocation to reproduction in Barrow’s goldeneye. J Wildlife Manage 69:1221–1228

    Article  Google Scholar 

  • Hubbs AH, Boonstra R (1997) Population limitation in Arctic ground squirrels: effects of food and predation. J Anim Ecol 66:527–541

    Article  Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166:388–395

    Article  Google Scholar 

  • Iverson S (2009) Encyclopedia of mammals. Academic Press, San Diego

    Google Scholar 

  • Jackson AL, Inger R, Bearhop S, Parnell A (2009) Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore, Semmens (2008). Ecol Lett 12:E1–E5

    Article  PubMed  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biology 29:521–528

    Article  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1991) metabolic responses to flight and fasting in night-migrating passerines. J Comp Physiol B 161:465–474

    Article  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1992) High plasma triglyceride levels in small birds during migratory flight: a new pathway for fuel supply during endurance locomotion at very high mass specific metabolic rates. Physiol Zool 65:112–123

    CAS  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1997) Diurnal variation of metabolic responses to short-term fasting in passerine birds during the postbreeding, molting and migratory period. Condor 99:113–122

    Article  Google Scholar 

  • Katzenberg MA, Lovell NC (1999) Stable isotope variation in pathological bone. Int J Osteoarchaeol 9:316–324

    Article  Google Scholar 

  • Kempster B, Zanette L, Longstaffe FJ, MacDougall-Shackleton SA, Wingfield JC, Clinchy M (2007) Do stable isotopes reflect nutritional stress? Results from a laboratory experiment on song sparrows. Oecologia 151:365–371

    Article  PubMed  Google Scholar 

  • King JR, Murphy ME (1985) Periods of nutritional stress in the annual cycles of endotherms: fact or fiction? A Zool 25:955–964

    Google Scholar 

  • Kirk KL (1997) Life-history responses to variable environments: starvation and reproduction in planktonic rotifers. Ecology 78:434–441

    Article  Google Scholar 

  • Klaassen M, Lindström A, Heltofte H, Piersma T (2001) Arctic waders are not capital breeders. Nature 413:794

    Article  PubMed  CAS  Google Scholar 

  • Koch PI (1997) Nitrogen isotope ecology of carnivores and herbivores. J Vertebr Paleontol 17:57A

    Google Scholar 

  • Kurle CM, Worthy GAJ (2002) Stable nitrogen and carbon isotope ratios in multiple tissues of the northern fur seal Callorhinus ursinus: implications for dietary and migratory reconstructions. Mar Ecol-Progr Ser 236:289–300

    Article  Google Scholar 

  • Lacroix M, Pallikarakis N, Mosora F (1982) Comparison of Naturally and artificially labelled glucose utilization to study glucose oxidation by means of 13CO2/12CO2 breath test. In: Schmidt HL, Förstel H, Heinzinger K (eds) Stable Isotopes. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Le Boeuf BJ, Whiting RJ, Gantt RF (1973) Perinatal behavior of northern elephant seal females and their young. Behaviour 43:121–156

    Article  Google Scholar 

  • Logan RPH (1998) Urea breath tests in the management of Helicobacter pylori infection. Gut 43(Suppl 1):S47–S50

    Article  PubMed  Google Scholar 

  • Malthus T (1798) An essay on the principle of population. J. Johnson, St. Paul’s Church-Yard, London

    Google Scholar 

  • Macko SA, Lee WY, Parker PL (1982) Nitrogen and carbon isotope fractionation by two species of marine amphipods: laboratory and field studies. J Exp Mar Biol Ecol 63:145–149

    Article  Google Scholar 

  • Martinez del Rio C, Wolf BO (2005) Mass balance models for animal isotopic ecology. In: Starck MA, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, New Hampshire

    Google Scholar 

  • Martinez del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  Google Scholar 

  • Martins IJ, Redgrave TG (2004) Obesity and post-prandial lipid metabolism. Feast or famine? J Nutr Biochem 15:130–141

    Article  PubMed  CAS  Google Scholar 

  • McClean P, Harding M, Coward WA, Green MR, Weaver LT (1993) Measurement of fat digestion in early life using a stable isotope breath test. Arch Dis Child 69:366–370

    Article  PubMed  CAS  Google Scholar 

  • McCue MD (2007a) Western diamondback rattlesnakes demonstrate physiological and biochemical strategies for tolerating prolonged starvation. Physiol Biochem Zool 80:25–34

    Article  PubMed  CAS  Google Scholar 

  • McCue MD (2007b) Snakes survive starvation by employing supply- and demand-side economic strategies. Zoology 110:318–327

    Article  PubMed  Google Scholar 

  • McCue MD (2008) Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa. Physiol Biochem Zool 81:14–24

    Article  PubMed  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol 156:1–18

    Article  CAS  Google Scholar 

  • McCue MD (2011) Tracking the Oxidative and Nonoxidative Fates of Isotopically Labeled Nutrients in Animals. Bioscience 61:217–230

    Article  Google Scholar 

  • McCue MD, Pollock ED (2008) Stable isotopes may provide evidence for starvation in reptiles. Rapid Commun Mass Spectrom 22:2307–2314

    Article  PubMed  CAS  Google Scholar 

  • McCue MD, Sivan O, McWilliams SR, Pinshow B (2010) Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled 13CO2. J Exp Biol 213:782–789

    Article  PubMed  CAS  Google Scholar 

  • McCue MD, McWilliams SR, Pinshow B (2011) Ontogeny and nutritional status influence oxidative kinetics of nutrients and whole-animal bioenergetics in zebra finches, Taeniopygia guttata: new applications for 13C breath yesting. Physiol Biochem Zool 84:32–42

    Article  PubMed  CAS  Google Scholar 

  • McWilliams SR, Karasov WH (2001) Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp Biochem and Physiol A-Mol and Integr Physiol 128:579–593

    CAS  Google Scholar 

  • McWilliams SR, Karasov WH (2005) Migration takes gut: digestive physiology of migratory birds and its ecological significance. In: Mara P, Greenberg R (eds) Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Meijer T, Drent R (1999) Re-examination of the capital and income dichotomy in breeding birds. Ibis 141:399–414

    Article  Google Scholar 

  • Miller RF, Orr GL, Fritz P, Downer RGH, Morgan AV (1984) Stable carbon isotope ratios in Periplaneta americana L., the American cockroach. Can J Zool 63:584–589

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimica Cosmochimica Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Moen J, Anderson R, Illius A (2006) Living in a seasonal environment. In: Danell K, Bergstrom R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Let 11:470–480

    Article  PubMed  Google Scholar 

  • Mrosovsky N, Sherry DF (1980) Animal anorexias. Science 207:837–842

    Article  PubMed  CAS  Google Scholar 

  • Newton I (2004) Population limitation in migrants. Ibis 146:197–226

    Article  Google Scholar 

  • Nowicki S, Searcy WA, Peters S (2002) Brain development, song learning and mate choice in birds: a review and experimental test of the “nutritional stress hypothesis”. J Comp Physiol A 188:1003–1014

    Article  CAS  Google Scholar 

  • Oelbermann K, Scheu S (2002) Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130:337–344

    Article  Google Scholar 

  • Ohlsson T, Smith HG (2001) Early nutrition causes persistent effects on pheasant morphology. Physiol Biochem Zool 74:212–218

    Article  PubMed  CAS  Google Scholar 

  • Olive PJW, Pinnegar JK, Polunin NVC, Richards G, Welch R (2003) Isotope trophic-step fractionation: a dynamic equilibrium model. J Anim Ecol 72:608–617

    Article  Google Scholar 

  • Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M, Dearing MD, Roeder BL, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J Archaeol Sci 32:1459–1470

    Article  Google Scholar 

  • Pearson SF, Levey DJ, Greenberg CH, del Rio CM (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523

    PubMed  Google Scholar 

  • Peterson RO, Thomas NJ, Thurber JM, Vucetich JA, Waite TA (1998) Population limitation and the wolves of Isle Royale. J Mammal 79:828–841

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  PubMed  Google Scholar 

  • Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125

    Google Scholar 

  • Piniak GA, Lipschultz F (2004) Effects of nutritional history on nitrogen assimilation in congeneric temperate and tropical scleractinian corals. Mar Biol 145:1085–1096

    Article  CAS  Google Scholar 

  • Polischuk SC, Hobson KA, Ramsay MA (2001) Use of stable-carbon and -nitrogen isotopes to assess weaning and fasting in female polar bears and their cubs. Can J Zool 79:499–511

    Article  CAS  Google Scholar 

  • Reynolds PE (2001) Reproductive patterns of female muskoxen in northeastern Alaska. Alces 37:403–410

    Google Scholar 

  • Rion S, Kawecki TJ (2007) Evolutionary biology of starvation resistance: what we have learned from Drosophila. J Evolution Biol 20:1655–1664

    Article  CAS  Google Scholar 

  • Ryder JP (1970) A possible factor in the evolution of clutch size in Ross Goose. Wilson Bull 82:5–13

    Google Scholar 

  • Schmidt O, Scrimgeour CM, Curry JP (1999) Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia 118:9–15

    Article  PubMed  CAS  Google Scholar 

  • Schoeller DA, Brown C, Nakamura K, Nakagawa A, Mazzeo RS, Brooks BA, Budinger TF (1984) Influence of metabolic fuel on the 13CO2/12CO2 ratio of breath CO2. Biomed Mass Spectrom 11:557–561

    Article  PubMed  CAS  Google Scholar 

  • Schwilch R, Jenni L, Jenni-Eiermann S (1996) Metabolic responses of homing pigeons to flight and subsequent recovery. J Comp Physiol B 166:77–87

    Article  Google Scholar 

  • Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159:41–48

    Article  PubMed  Google Scholar 

  • Semmens BX, Moore JW, Ward EJ (2009) Improving Bayesian isotope mixing models: a response to Jackson et al. (2009). Ecol Lett 12:E6–E8

    Article  Google Scholar 

  • Senechal E, Bety J, Gilchrist HG, Hobson KA, Jamieson SE (2011) Do purely capital layers exist among flying birds? Evidence of exogenous contribution to arctic-nesting common eider eggs. Oecologia 165:593–604

    Article  PubMed  Google Scholar 

  • Sick H, Roos N, Saggau E, Haas K, Meyn V, Walch B, Trugo N (1997) Amino acid utilization and isotope discrimination of amino nitrogen in nitrogen metabolism of rat liver in vivo. Z Ernahrungswiss 36:340–346

    Google Scholar 

  • Sponheimer M, Robinson TF, Cerling TE, Tegland L, Roeder BL, Ayliffe L, Dearing MD, Ehleringer JR (2006) Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Commun Mass Spectrom 20:1395–1399

    Article  PubMed  CAS  Google Scholar 

  • Starck JM, Moser P, Werner RA, Linke P (2004) Pythons metabolize prey to fuel the response to feeding. Proc Roy Soc Ser B 271:903–908

    Article  Google Scholar 

  • Steele KW, Daniel RM (1978) Fractionation of nitrogen isotopes by animals: a further complication to the use of variations in the natural abundance of 15N for tracer studies. J Agr Sci 90:7–9

    Article  CAS  Google Scholar 

  • Stevens RE, Lister AM, Hedges REM (2006) Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149:12–21

    Article  PubMed  Google Scholar 

  • Sullivan KA (1989) Age-specific mortality in juvenile juncos (Junco phaenotus). J Anim Ecol 58:275–286

    Article  Google Scholar 

  • Swain SD (1992) Energy substrate profiles during fasting in Horned Larks (Eremophila alpestris). Physiol Zool 65:568–582

    CAS  Google Scholar 

  • Tsukamoto K (2009) Oceanic migration and spawning of anguillid eels. J Fish Biol 74:1833–1852

    Article  PubMed  CAS  Google Scholar 

  • Ugan A, Coltrain J (2011) Variation in collagen stable nitrogen values in black-tailed jackrabbits (Lepus californicus) in relation to small-scale differences in climate, soil, and topography. J Archaeol Sci 38:1417–1429

    Article  Google Scholar 

  • Van Dyke JU, Beaupre SJ (2011) Bioenergetic components of reproductive effort in viviparous snakes: costs of vitellogenesis exceed costs of pregnancy. Comp Biochem Physiol 160:504–515

    Article  CAS  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251

    Article  PubMed  CAS  Google Scholar 

  • Warner DA, Bonnet X, Hobson KA, Shine R (2008) Lizards combine stored energy and recently acquired nutrients flexibly to fuel reproduction. J Anim Ecol 77:1242–1249

    Article  PubMed  Google Scholar 

  • Waterlow JC (1968) The adaptation of protein metabolism to low protein intake. In: McCance RA, Widdowson EM (eds) Calorie and protein deficiencies. Little, Brown and Company, Boston

    Google Scholar 

  • Waterlow JC (1986) Metabolic adaptation to low intakes of energy and protein. Annu Rev Nutr 6:495–526

    Article  PubMed  CAS  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin

    Google Scholar 

  • White RG, Rowell JE, Hauer WE (1997) The role of nutrition, body condition and lactation on calving success in muskoxen. J Zool 243:13–20

    Article  Google Scholar 

  • Williams CT, Buck CL, Sears J, Kitaysky AS (2007) Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153:11–18

    Article  PubMed  Google Scholar 

  • Young VR, Scrimshaw NS (1971) The physiology of starvation. Sci Am 225:14–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Marshall McCue for giving me the opportunity to contribute this chapter and for reviewing this chapter. His comments and insights were very helpful and his patience greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent A. Hatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hatch, K.A. (2012). The Use and Application of Stable Isotope Analysis to the Study of Starvation, Fasting, and Nutritional Stress in Animals. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_20

Download citation

Publish with us

Policies and ethics