Finite Strains of a Granular Material
Chapter
First Online:
Abstract
A mathematical model of developed flow of a granular material is considered. On the phenomenological level, elastic properties characteristic for a compacted material and viscous properties appearing in loosening are taken into account. Exact solutions of problems on rotational and plane-parallel motion of a material with stagnant zones are constructed. Using them, influence of viscosity on a flow pattern is analyzed.
Keywords
Variational Inequality Granular Material Constitutive Relationship Shear Angle Stagnant Zone
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. Transactions of ASME. J. Appl. Mech. 46(1), 78–82 (1979)CrossRefGoogle Scholar
- 2.Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Ser. A 225(1160), 49–63 (1954)CrossRefGoogle Scholar
- 3.Bakhvalov, N.S., Zhidkov, N.P., Kobelkov, G.M.: Chislennye Metody (Numerical Methods). BINOM, Moscow (2003)Google Scholar
- 4.Batchelor, G.K.: Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967)Google Scholar
- 5.Berdichevsky, V.L.: Variational Principles of Continuum Mechanics, vol. 1: Fundamentals. Springer, Berlin (2009)Google Scholar
- 6.Berdichevsky, V.L.: Variational Principles of Continuum Mechanics, vol. 2: Applications. Springer, Berlin (2009)Google Scholar
- 7.Dolgunin, V.N., Borschev, V.Y.: Bystrye Gravitaczionnye Techeniya Zernistykh Materialov: Tekhnika Izmereniya, Zakonomernosti, Tekhnologicheskoe Primenenie (Fast Gravity Flows of Granular Materials: Technique of Measurement, Regularities, Technological Application). Mashinostroenie-1, Moscow (2005)Google Scholar
- 8.Gantmacher, F.R.: The Theory of Matrices, vol. 1–2. AMS Chelsea Publishing, Providence, Rhode Island, USA (1990)Google Scholar
- 9.Godunov, S.K.: Elementy Mekhaniki Sploshnoi Sredy (Elements of Continuum Mechanics). Nauka, Moscow (1978)Google Scholar
- 10.Goldshtik, M.A.: Proczessy Perenosa v Zernistom Sloe (Transfer Processes in Granular Layer). Inst. Teplofiziki SO RAN, Novosibirsk (1984)Google Scholar
- 11.Golovanov, Y.V., Shirko, I.V.: Review of current state of the mechanics of fast motions of granular materials. In: Shirko, I.V. (ed.) Mechanics of Granular Media: Theory of Fast Motions, Ser. New in Foreign Science, vol. 36, pp. 271–279. Mir, Moscow (1985)Google Scholar
- 12.Goodman, M.A., Cowin, S.C.: Two problems in the gravity flow of granular materials. J. Fluid Mech. 45(2), 321–339 (1971)CrossRefGoogle Scholar
- 13.Grigorian, S.S.: On basic concepts in soil dynamics. J. Appl. Math. Mech. 24(6), 1604–1627 (1960)CrossRefGoogle Scholar
- 14.Joseph, D.: Stability of Fluid Motions, Springer Tracts in Natural Philosophy, vol. 27–28. Springer, New York (1976)Google Scholar
- 15.Kondaurov, V.I., Nikitin, L.V.: Teoreticheskie Osnovy Reologii Geomaterialov (Theoretical Foundations of Rheology of Geomaterials). Nauka, Moscow (1990)Google Scholar
- 16.Korobeinikov, S.N.: Nelineinoe Deformirovanie Tverdykh Tel (Nonlinear Deformation of Solids). Izd. SO RAN, Novosibirsk (2000)Google Scholar
- 17.Lehmann, T., Guo, Z., Liang, H.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A/Solids 10(4), 395–404 (1991)Google Scholar
- 18.Marchuk, G.I.: Methods of Numerical Mathematics. Springer, Berlin (1975)Google Scholar
- 19.Maslennikova, N.N., Sadovskii, V.M.: Modeling of the dilatancy under finite strains of granular material. Vestnik Krasnoyarsk. Univ.: Fiz.-Mat. Nauki 4, 215–219 (2005)Google Scholar
- 20.Meyers, A., Schieße, P., Bruhns, O.T.: Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates. Acta Mechanica 139(1–4), 91–103 (2000)CrossRefGoogle Scholar
- 21.Nikolaevskii, V.N.: Governing equations of plastic deformation of a granular medium. J. Appl. Math. Mech. 35(6), 1017–1029 (1971)CrossRefGoogle Scholar
- 22.Revuzhenko, A.F.: Mekhanika Uprugoplasticheskikh Sred i Nestandartnyi Analiz (Mechanics of Elastic-Plastic Media and Nonstandard Analysis). Izd. Novosib. Univ., Novosibirsk (2000)Google Scholar
- 23.Revuzhenko, A.F.: Mechanics of Granular Media. Springer, Berlin (2006)Google Scholar
- 24.Revuzhenko, A.F., Stazhevskii, S.B., Shemyakin, E.I.: On mechanism of deformation of granular material under large shears. Fiz.-Tekhn. Probl. Razrab. Pol. Iskop. 3, 130–133 (1974)Google Scholar
- 25.Sadovskaya O.V., Sadovskii, V.M.: Rheological models of granular medium under small strains. In: Proceedings of the International Conference on Fundamental and Applied Problems of Mechanics, Izd. Khabarovsk. Gos. Tekhn. Univ., Khabarovsk, vol. 1, pp. 95–108 (2003)Google Scholar
- 26.Sadovskaya, O.V., Sadovskii, V.M.: The theory of finite strains of a granular material. J. Appl. Math. Mech. 71(1):93–110 (2007)Google Scholar
- 27.Sadovskii, V.M.: Radial expansion of a granular medium in spherical and cylindrical layers. J. Appl. Mech. Tech. Phys. 50(3), 519–524 (2009)CrossRefGoogle Scholar
- 28.Savage, S.B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92(1), 53–96 (1979)CrossRefGoogle Scholar
- 29.Shkadov, V.Y., Zapryanov, Z.D.: Techeniya Vyazkoi Zhidkosti (Flows of Viscous Fluid). Izd. Mosc. Univ., Moscow (1984)Google Scholar
- 30.Sokolovskii, V.V.: Statics of Granular Media. Pergamon Press, Oxford (1965)Google Scholar
- 31.Tritenko, A.N.: Mekhanika Sypuchei Sredy (Mechanics of Granular Medium). Izd. Vologod. Univ., Vologda (2005)Google Scholar
- 32.Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124(1–4), 89–105 (1997)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012