Results of High-Performance Computing

  • Oxana Sadovskaya
  • Vladimir Sadovskii
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 21)


Algorithms for numerical implementation of the shock-capturing method for solving the problems of dynamics of a granular material are constructed. In these algorithms computations are parallelized at the stage of splitting a problem with respect to spatial variables. Different ways of distribution of a computational domain among parallel computational nodes are considered. It is shown that the minimal number of exchanges between nodes is achieved when a domain is decomposed into regular cubes. Numerical results for propagation of elastic–plastic waves in two-dimensional and three-dimensional formulations obtained with the help of multiprocessor computer systems of the MVS series are presented.


Granular Material Rigid Inclusion Neighboring Block Refract Wave Impulsive Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antonov, A.S.: Parallel’noe Programmirovanie s Ispol’zovaniem Tekhnologii MPI (Parallel Programming with Using the MPI Technology). Izd. Mosk. Univ., Moscow (2004)Google Scholar
  2. 2.
    Hockney, R., Jesshope, K.: Parallel Computers: Architecture Programming and Algorithms. Adam Hilger, Bristol (1988)Google Scholar
  3. 3.
    Korneev, V.D.: Parallel’noe Programmirovanie v MPI (Parallel Programming in MPI). Izd. IVMMG SO RAN, Novosibirsk (2002)Google Scholar
  4. 4.
    Kuchunova, E.V., Sadovskii, V.M.: Computing algorithm for calculation of wave fields in block media on multiprocessor computers. J. Sib. Fed. Univ. Math. Phys. 1(2), 210–220 (2008)Google Scholar
  5. 5.
    Kuchunova, E.V., Sadovskii, V.M. Numerical analysis of seismic wave propagation in block media on multiprocessor computers. Numer. Methods Progr. Adv. Comput. 9(1), 66–76 (2008)Google Scholar
  6. 6.
    Sadovskaya, O.V.: Shock-capturing method as applied to the analysis of elastoplastic waves in a granular material. Comput. Math. Math. Phys. 44(10), 1818–1828 (2004)Google Scholar
  7. 7.
    Sadovskaya, O.V.: Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions. Comput. Math. Math. Phys. 49(2), 304–313 (2009)CrossRefGoogle Scholar
  8. 8.
    Sadovskaya, O.V., Sadovskii, V.M.: Parallel implementation of an algorithm for the computation of elastic–plastic waves in a granular medium. Numer. Methods Progr. Adv. Comput. 6(2), 209–216 (2005)Google Scholar
  9. 9.
    Sadovskaya, O.V., Sadovskii, V.M.: Parallel computations in 3D problems of the dynamics of granular material. Vestnik Krasnoyarsk. Univ. Fiz-Mat. Nauki 1, 215–221 (2006)Google Scholar
  10. 10.
    Sadovskaya, O.V., Sadovskii, V.M.: Parallel computing technology for dynamic problems of elastic–plastic materials with microstructure. Comput. Technol. 14(6), 82–96 (2009)Google Scholar
  11. 11.
    Sadovskaya, O.V., Sadovskii, V.M.: Numerical analysis of the waves propagation processes in elastic–plastic and granular media on multiprocessor computer systems. In: Zbornik radova konferencije MIT 2009, Prirodno-Matematicki Fakultet Univ. u Pristini, IVT SO RAN, Kosovska Mitrovica, Novosibirsk, pp. 358–361 (2010)Google Scholar
  12. 12.
    Sadovskii, V.M.,, Sadovskaya, O.V. Parallel computation of elastic–plastic waves propagation in granular material. In: Proceedings of the VII International Conference on Mathematical and Numerical Aspects of Wave Propagation “Waves 2005”, Brown University, Providence, pp. 223–225 (2005)Google Scholar
  13. 13.
    Voevodin, V.V.: Matematicheskie Modeli i Metody v Parallel’nykh Proczessakh (Mathematical Models and Methods in Parallel Processes). Nauka, Moscow (1986)Google Scholar
  14. 14.
    Voevodin, V.V.: Parallel’nye Struktury Algoritmov i Programm (Parallel Structures of Algorithms and Programs). Izd. Akad. Nauk SSSR, Moscow (1987)Google Scholar
  15. 15.
    Voevodin, V.V.: Mathematical Foundations of Parallel Computing, World Scientific Series in Computer Science, vol. 33. World Scientific Publishing, Singapore (1992)Google Scholar
  16. 16.
    Voevodin, V.V., Voevodin, V.V.: Parallel’nye Vychisleniya (Parallel Computations). BKhV-Peterburg, St. Petersburg (2002)Google Scholar
  17. 17.
    Voevodin, V.V., Zhumatii, S.A.: Vychislitel’noe Delo i Klasternye Sistemy (Computational Work and Cluster Systems). Izd. Mosk. Univ., Moscow (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICM SB RASKrasnoyarskRussia

Personalised recommendations