Contact Interaction of Layers

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 21)

Abstract

Algorithms for numerical implementation of conditions of dynamic contact interaction of deformable materials with a beforehand unknown zone of contact which varies in the process of motion are constructed. These algorithms take into account the influence of friction forces in a contact zone. On the basis of these algorithms a method for the numerical modeling of deformation of a body of a granular material in the presence of sliding surfaces is worked out. Results of testing an algorithm and results of the numerical solution of a problem for two layers of a medium consisting of an elastic-plastic material are presented. Computational algorithms are developed that simulate the dynamic interaction of elastic blocks through thin viscoelastic layers in structurally inhomogeneous media such as rocks.

Keywords

Variational Inequality Plastic Zone Contact Zone Contact Interaction Elastic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aleksandrova, N.I., Chernikov, A.G., Sher, E.N.: Experimental investigation into the one-dimensional calculated model of wave propagation in block medium. J. Min. Sci. 41(3), 232–239 (2005)Google Scholar
  2. 2.
    Aleksandrova, N.I., Sher, E.N., Chernikov, A.G.: Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves. J. Min. Sci. 44(3), 225–234 (2008)CrossRefGoogle Scholar
  3. 3.
    Annin, B.D.: Mekhanika Deformirovaniya i Optimal’noe Proektirovanie Sloistykh Tel (Mechanics of Deformation and Optimal Design of Laminated Bodies). Izd, IGiL SO RAN, Novosibirsk (2005)Google Scholar
  4. 4.
    Annin, B.D., Sadovskaya, O.V., Sadovskii, V.M.: Numerical simulation of oblique impact of plates in the elastoplastic formulation. Phys. Mesomechanics 3(4), 23–28 (2000)Google Scholar
  5. 5.
    Annin, B.D., Sadovskaya, O.V., Sadovskii, V.M.: Dynamic contact problems of elasto-plasticity. Problems Mater. Sci. 33(1), 426–434 (2003)Google Scholar
  6. 6.
    Boreskov, A.V., Kharlamov, A.A.: Osnovy Raboty s Tekhnologiei CUDA (Basics of Operating with the CUDA Technology). DMK Press, Moscow (2010)Google Scholar
  7. 7.
    Bychek, O.V., Sadovskii, V.M.: Study of the dynamic contact interaction of deformable bodies. J. Appl. Mech. Tech. Phys. 39(4), 628–633 (1998)CrossRefGoogle Scholar
  8. 8.
    Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)Google Scholar
  9. 9.
    Farber, R.: CUDA Application Design and Development. Morgan Kaufmann/Elsevier, San Fransisco/Amsterdam (2011)Google Scholar
  10. 10.
    Glowinski, R., Lions, J.L., Trémoliéres, R.: Analyse Numérique des Inéquations Variationnelles, vol. 1–2, Dunod, Paris (1976)Google Scholar
  11. 11.
    Godunov, S.K.: Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics). Nauka, Moscow (1979)Google Scholar
  12. 12.
    Hwu, W.W. (ed.): GPU Computing Gems, Emerald edn. Morgan Kaufmann/Elsevier, San Fransisco/Amsterdam (2011)Google Scholar
  13. 13.
    Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)Google Scholar
  14. 14.
    Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann/Elsevier, San Fransisco/Amsterdam (2010)Google Scholar
  15. 15.
    Kornev, V.M., Yakovlev, I.V.: Model of undulation in explosive welding. Combustion, Explosion, and Shock Waves 20(2), 204–207 (1984)CrossRefGoogle Scholar
  16. 16.
    Kravchuk, A.S.: On the Hertz problem for linearly and nonlinearly elastic bodies of finite dimensions. Dokl. Akad. Nauk SSSR 230(2), 308–310 (1976)Google Scholar
  17. 17.
    Kravchuk, A.S.: Formulation of the problem about contact of several deformable bodies as the problem of nonlinear programming. J. Appl. Math. Mech. 42(3), 489–489 (1978)CrossRefGoogle Scholar
  18. 18.
    Kravchuk, A.S.: On the theory of contact problems taking account of friction on the contact surface. J. Appl. Math. Mech. 44(1), 83–88 (1980)CrossRefGoogle Scholar
  19. 19.
    Kravchuk, A.S.: Variaczionnye i Kvazivariaczionnye Neravenstva v Mekhanike (Variational and Quasivariational Inequalities in Mechanics). MGAPI, Moscow (1997)Google Scholar
  20. 20.
    Kravchuk, A.S., Sursyakov, V.A.: Numerical solution of geometrically nonlinear contact problems. Dokl. Akad. Nauk SSSR 259(6), 1327–1329 (1981)Google Scholar
  21. 21.
    Kurlenya, M.V., Oparin, V.N., Vostrikov, V.I.: On formation of elastic wave packages at impulsive excitation of block media. Waves of pendulum type. Dokl. Akad. Nauk SSSR 333(4), 3–13 (1993)Google Scholar
  22. 22.
    Revuzhenko, A.F.: Mekhanika Uprugoplasticheskikh Sred i Nestandartnyi Analiz (Mechanics of Elastic-Plastic Media and Nonstandard Analysis). Izd. Novosib. Univ., Novosibirsk (2000)Google Scholar
  23. 23.
    Revuzhenko, A.F.: Mechanics of Granular Media. Springer, Berlin (2006)Google Scholar
  24. 24.
    Revuzhenko, A.F., Shemyakin, E.I.: Kinematics of deformation of granular medium with nonviscous friction. Prikl. Mekh. Tekhn. Fiz. 15(4), 119–124 (1974)Google Scholar
  25. 25.
    Revuzhenko, A.F., Stazhevskii, S.B., Shemyakin, E.I.: On mechanism of deformation of granular material under large shears. Fiz.-Tekhn. Probl. Razrab. Pol. Iskop. 3, 130–133 (1974)Google Scholar
  26. 26.
    Revuzhenko, A.F., Stazhevskii, S.B., Shemyakin, E.I.: Problems of mechanics of granular media in mining. Fiz.-Tekhn. Probl. Razrab. Pol. Iskop. 3, 19–25 (1982)Google Scholar
  27. 27.
    Sadovskaya, O.V.: On numerical analysis of the collision of elastic-plastic bodies taking into account finite rotations. In: Proceedings of the Continuum Dynamics Mathematical Problems of the Continuum Mechanics, Izd. IGiL SO RAN, Novosibirsk, vol. 114, pp. 196–199 (1999)Google Scholar
  28. 28.
    Sadovskaya, O.V.: Application of quasivariational inequalities to the solution of dynamic contact problems. In: Proceedings of the International Conference on Mathematical Models and Methods of Their Investigation, IVM SO RAN, Krasnoyarsk, vol. 2, pp. 165–171 (2001)Google Scholar
  29. 29.
    Sadovskaya, O.V.: Numerical solution of dynamic contact problems taking into account finite rotations. In: Proceedings of the Mathematical Centre by N. I. Lobachevskii, Models of the Continuum Mechanics, Izd. Kazansk. Mat. Obshhestva, Kazan, vol. 16, pp. 65–74 (2002)Google Scholar
  30. 30.
    Sadovskii, M.A.: Natural lumpiness of a rock. Dokl. Akad. Nauk SSSR 247(4), 829–831 (1979)Google Scholar
  31. 31.
    Saraikin, V.A.: Elastic properites of blocks in the low-frequency component of waves in a 2D medium. J. Min. Sci. 45(3), 207–221 (2009)CrossRefGoogle Scholar
  32. 32.
    Signorini, A.: Sopra alcune questioni di elastostatica. Atti Soc. Ital. Progr. Sci. 513–533 (1933)Google Scholar
  33. 33.
    Varygina, M.P., Pokhabova, M.A., Sadovskaya, O.V., Sadovskii, V.M.: Numerical algorithms for the analysis of elastic waves in block media with thin interlayers. Numer. Methods Program. Adv. Comput. 12(2), 190–197 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICM SB RASKrasnoyarskRussia

Personalised recommendations