Rotational Degrees of Freedom of Particles

  • Oxana Sadovskaya
  • Vladimir Sadovskii
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 21)


On the basis of a mathematical model of the Cosserat continuum and a generalized model, that describes the different resistance of a material with respect to tension and compression, the influence of rotational motion of particles onto the stress-strain state of a granular material is studied. It is shown that a couple-stress elastic medium has the resonance frequency, coinciding with the frequency of natural oscillations of rotational motion of the particles. The solution of the problem of uniform shear of a granular material, having rotational degrees of freedom, is analyzed in the framework of linear and nonlinear models.


Variational Inequality Rotational Motion Couple Stress Inertia Tensor Angular Velocity Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aero, E.L., Bulygin, A.N.: Equations of motion of nematic liquid-crystal media. J. Appl. Math. Mech. 35(5), 879–891 (1971)CrossRefGoogle Scholar
  2. 2.
    Aero, E.L., Bulygin, A.N.: Kinematics of nematic liquid crystals. Prikl. Mekh. VIII(3), 97–105 (1972)Google Scholar
  3. 3.
    Aero, E.L., Kuvshinskii, E.V.: Basic equations of the theory of elasticity of media with rotational interaction of particles. Fizika Tverd. Tela 2(7), 1399–1409 (1960)Google Scholar
  4. 4.
    Aero, E.L., Bulygin, A.N., Kuvshinskii, E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–336 (1965)CrossRefGoogle Scholar
  5. 5.
    Altenbach, H., Eremeyev, V.A.: On the equations of the Cosserat-type shells. Comput. Continuum Mech. 2(4), 11–18 (2009)Google Scholar
  6. 6.
    Altenbach, H., Zhilin, P.A.: General theory of elastic simple shells. Uspekhi Mekh. 11(4), 107–148 (1988)Google Scholar
  7. 7.
    Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004)Google Scholar
  8. 8.
    Altenbach, J., Altenbach, H., Eremeyev, V.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)CrossRefGoogle Scholar
  9. 9.
    Behura, J., Batzle, M., Hofmann, R., Dorgan, J.: Heavy oils: their shear story. Geophysics 72(5), E175–E183 (2007)CrossRefGoogle Scholar
  10. 10.
    Berezin, Y.A., Spodareva, L.A.: Longitudinal waves in grainy media. J. Appl. Mech. Tech. Phys. 42(2), 316–320 (2001)CrossRefGoogle Scholar
  11. 11.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. In: Chwolson, O.D. (ed.) Traité Physique, pp. 953–1173. Librairie Scientifique A. Hermann et Fils, Paris (1909)Google Scholar
  12. 12.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, London (2003)Google Scholar
  14. 14.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications. Kluwer Academic, Dordrecht (1988)Google Scholar
  15. 15.
    Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants, pt. 1. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975)CrossRefGoogle Scholar
  16. 16.
    Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants, pt. 2. Arch. Mech. 33(5), 717–737 (1981)Google Scholar
  17. 17.
    Godunov, S.K.: Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics). Nauka, Moscow (1979)Google Scholar
  18. 18.
    Godunov, S.K., Peshkov, I.M.: Symmetric hyperbolic equations in the nonlinear elasticity theory. Comput. Math. Math. Phys. 48(6), 975–995 (2008)CrossRefGoogle Scholar
  19. 19.
    Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic / Plenum, New York (2003)Google Scholar
  20. 20.
    Goodarz, A.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 17(1), 21–55 (1982)CrossRefGoogle Scholar
  21. 21.
    Goursat, É.: A Course in Mathematical Analysis, Differential Equations, vol. II(2). Dover Publications, New York (1917)Google Scholar
  22. 22.
    Green, A.E., Naghdi, P.M., Wainwright, W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)CrossRefGoogle Scholar
  23. 23.
    Kalugin, A.G.: Mekhanika Anizotropnykh Zhidkostei (Mechanics of Anisotropic Liquids). Izd. Czentra Prikl. Issled. Mekh.-Mat. Fakult. MGU, Moscow (2005)Google Scholar
  24. 24.
    Koiter, W.T.: Couple stresses in the theory of elasticity. Proc. Kon. Nederl. Akad. Wetensch. B 67, 17–44 (1964)Google Scholar
  25. 25.
    Kondaurov, V.I.: Non-linear equations of the dynamics of an elastic micropolar medium. J. Appl. Math. Mech. 48(3), 291–299 (1984)CrossRefGoogle Scholar
  26. 26.
    Kulesh, M.A., Matveenko, V.P., Shardakov, I.N.: Construction of analytical solutions of some two-dimensional problems in the moment theory of elasticity. Mech. Solids 37(5), 56–67 (2002)Google Scholar
  27. 27.
    Kulesh, M.A., Matveenko, V.P., Shardakov, I.N.: On the propagation of elastic surface waves in the Cosserat medium. Dokl. Phys. 50(11), 601–604 (2005)CrossRefGoogle Scholar
  28. 28.
    Kulikovskii, A.G., Sveshnikova, E.I.: Nonlinear Waves in Elastic Media. CRC Press, Boca Raton (1995)Google Scholar
  29. 29.
    Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure, chap. 1, pp. 1–22. Wiley, New York (1995)Google Scholar
  30. 30.
    Lyalin, A.E., Pirozhkov, V.A., Stepanov, R.D.: On the propagation of surface waves in the Cosserat medium. Akustich. Zh. 28(6), 838–840 (1982)Google Scholar
  31. 31.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(5), 415–448 (1962)CrossRefGoogle Scholar
  32. 32.
    Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)CrossRefGoogle Scholar
  33. 33.
    Pal’mov, V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Math. Mech. 28(3), 496–505 (1964)CrossRefGoogle Scholar
  34. 34.
    Pal’mov, V.A.: Vibrations of Elasto-Plastic Bodies. Foundation of Engineering Mechanics. Springer, Berlin (1998)Google Scholar
  35. 35.
    Parton, V.Z., Perlin, P.I.: Mathematical Methods of the Theory of Elasticity, vols. 1–2. Mir, Moscow (1984)Google Scholar
  36. 36.
    Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007)CrossRefGoogle Scholar
  37. 37.
    Richtmyer, R.: Principles of Advanced Mathematical Physics. Springer, New York (1978–1986)Google Scholar
  38. 38.
    Sadovskaya, O.V.: Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions. Comput. Math. Math. Phys. 49(2), 304–313 (2009)CrossRefGoogle Scholar
  39. 39.
    Sadovskaya, O.V., Sadovskii, V.M.: Constitutive equations of the heteromodular moment elastic medium. In: Hirschel, E.H., Krause, E. (eds.) Successes of Continuum Mechanics (to the 70-th Anniversary of Acad. V.A. Levin): Collected Papers, pp. 662–673, Vladivostok (2009)Google Scholar
  40. 40.
    Sadovskaya, O.V., Sadovskii, V.M.: Analysis of rotational motion of material microstructure particles by equations of the Cosserat elasticity theory. Acoust. Phys. 56(6), 942–950 (2010)CrossRefGoogle Scholar
  41. 41.
    Sadovskaya, O.V., Sadovskiy, V.M.: Numerical analysis of elastic waves propagation in the framework of Cosserat theory. In: IV European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM 2010): Proceedings, pp. 1–11. Springer, Paris (2010)Google Scholar
  42. 42.
    Sadovskaya, O.V., Sadovsky, V.M.: Numerical analysis of elastic waves propagation in Cosserat continuum. In: Proceedings of VIII International Conference on Mathematical and Numerical Aspects of Wave Propagation “Waves 2007”, pp. 327–329. University of Reading, Reading (2007)Google Scholar
  43. 43.
    Sadovskii, V.M.: Razryvnye Resheniya v Zadachakh Dinamiki Uprugoplasticheskikh Sred (Discontinuous Solutions in Dynamic Elastic-Plastic Problems). Fizmatlit, Moscow (1997)Google Scholar
  44. 44.
    Sadovskii, V.M.: Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory. Dal’nevost. Mat. Zh. 11(2), 201–212 (2011)Google Scholar
  45. 45.
    Sadovskii, V.M., Sadovskaya, O.V., Varygina, M.P.: Numerical modeling of three-dimensional wave motion in couple-stress media. Comput. Continuum Mech. 2(4), 111–121 (2009)Google Scholar
  46. 46.
    Schwartz, L.M., Johnson, D.L., Feng, S.: Vibrational modes in granular materials. Phys. Rev. Lett. 52(10), 831–834 (1984)CrossRefGoogle Scholar
  47. 47.
    Shemyakin, E.I.: Dinamicheskie Zadachi Teorii Uprugosti i Plastichnosti (Dynamic Problems of the Theory of Elasticity and Plastisity). Izd. Novosib. University, Novosibirsk (1968)Google Scholar
  48. 48.
    Shkutin, L.I.: Mekhanika Deformaczii Gibkikh Tel (Mechanics of Deformations of Flexible Bodies). Nauka, SO RAN, Novosibirsk (1988)Google Scholar
  49. 49.
    Valyukhov, S.G., Verveiko, N.D., Smotrova, O.A.: Mikropolyarnaya Model Svyaznykh Sypuchikh Materialov (Micropolar Model of Cohesive Granular Materials). Izd. Voronezh. University, Voronezh (1999)Google Scholar
  50. 50.
    Varygina, M.P., Sadovskaya, O.V.: Parallel computational algorithm for the solution of dynamic problems of the Cosserat elasticity theory. Vestnik Krasnoyarsk. Gos. Univ. Fiz-Mat. Nauki 4, 211–215 (2005)Google Scholar
  51. 51.
    Varygina, M.P., Kireev, I.V., Sadovskaya, O.V., Sadovskii, V.M.: Software for wavy motion analysis in moment materials on parallel supercomputers. Vestnik Sib. Gos. Aerokosm. Univ. 23(2), 104–108 (2009)Google Scholar
  52. 52.
    Varygina, M.P., Sadovskaya, O.V., Sadovskii, V.M.: Resonant properties of moment Cosserat continuum. J. Appl. Mech. Tech. Phys. 51(3), 405–413 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICM SB RASKrasnoyarskRussia

Personalised recommendations