Physically Based Simulation of Solid Objects’ Burning

  • Shiguang Liu
  • Tai An
  • Zheng Gong
  • Ichiro Hagiwara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7145)

Abstract

This paper presents a novel method for realistic simulation of solid objects’ burning. The temperature field is first constructed based on combustion theories. Then, a temperature field motivated interaction model (TFMI) is proposed to simulate the interactions between the fire and the objects during burning. In TFMI, the decomposition of the objects is modeled by improving the level set method and the spreading of fire is calculated using the updated temperature field at each time step. Our method can deal with varied topologies of different objects during burning. The fire is simulated by adopting stable fluid method and integrated into the whole burning scenes. Finally, various solid objects’ burning scenes are rendered automatically using the above model. The experiment results show the validity of our method.

Keywords

Boundary Vertex Solid Object Interior Vertex Pool Fire Varied Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reeves, W.T.: Particle Systems-a Technique for Modeling a Class of Fuzzy Objects. In: Proceedings of SIGGRAPH, pp. 359–376 (1983)Google Scholar
  2. 2.
    Pakeshi, A., Yuz, K., Nakajima, M.: Generating Two Dimensional Flame Images in Computer Graphics. IEICE Transactions 74(2), 457–462 (1991)Google Scholar
  3. 3.
    Hong, Y., Zhu, D., Qiu, X., Wang, Z.: Geometry-Based Control of Fire Simulation. The Visual Computer 26 (2010)Google Scholar
  4. 4.
    Rushmeier, H.E., Hamins, A., Choi, M.Y.: Volume rendering of pool fire data. In: Proceedings of IEEE Conference on Visualization, pp. 382–385 (1994)Google Scholar
  5. 5.
    Stam, J., Fiume, E.: Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes. In: Proceedings of SIGGRAPH, pp. 129–136 (1995)Google Scholar
  6. 6.
    Nguyen, D., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. In: Proceedings of SIGGRAPH, pp. 721–728 (2002)Google Scholar
  7. 7.
    Ishikawa, T., Miyazaki, R., Dobashi, Y., Nishita, T.: Visual simulation of spreading fire. In: Proceedings of NICOGRAPH International, pp. 43–48 (2005)Google Scholar
  8. 8.
    Hong, J., Shinar, T., Fedkiw. R.: Wrinkled flames and cellular patterns. In: Proceedings of SIGGRAPH, pp. 47.1–47.6 (2007)Google Scholar
  9. 9.
    Yngve, G.D., O’Brien, J.F., Hodgins, J.K.: Animating explosions. In: Proceedings of SIGGRAPH, pp. 29–36 (2000)Google Scholar
  10. 10.
    Feldman, B.E., O’Brien, J.F., Arikan, O.: Animating suspended particle explosions. ACM Transactions on Graphics 22(3), 708–715 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Losasso, F., Irving, G., Guendelman, E., et al.: Melting and burning solids into liquids and gases. IEEE Transactions on Visualization and Computer Graphics 12(3), 343–352 (2006)CrossRefGoogle Scholar
  12. 12.
    Melek, Z., Keyser, J.: Interactive simulation of burning objects. In: Proceedings of Pacific Graphics, pp. 462–466 (2003)Google Scholar
  13. 13.
    Melek, Z., Keyser, J.: Driving object deformations from internal physical processes. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 51–59 (2007)Google Scholar
  14. 14.
    Melek, Z., Keyser, J.: Bending burning matches and crumpling burning paper. In: Proceedings of SIGGRAPH Poster (2006)Google Scholar
  15. 15.
    Liu, S., Liu, Q., An, T., Sun, J., Peng, Q.: Physically based simulation of thin-shell objects’ burning. The Visual Computer 25(5-7), 687–696 (2009)CrossRefGoogle Scholar
  16. 16.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)Google Scholar
  17. 17.
    Fedkiw, R.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, New York (2003)Google Scholar
  18. 18.
    Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods. Journal of Scientific Computing 35(2-3), 300–329 (2007)CrossRefGoogle Scholar
  19. 19.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)MATHGoogle Scholar
  20. 20.
    Strain, J.: A fast modular semi-lagrangian method for moving interfaces. Journal of Computational Physics 161(2), 512–536 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93, 1591–1595 (1996)Google Scholar
  22. 22.
    Hugues, H., Tony, D., Tom, D., John, M., Werner, S.: Surface reconstruction from unorganized points. Computer Graphics 26(2), 71–78 (1992)CrossRefGoogle Scholar
  23. 23.
    Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceeding of SIGGRAPH, pp. 317–324 (1999)Google Scholar
  24. 24.
    Ken, M., David, E.B., Ross, T.W., Alan, H.B.: Level set surface editing operators. In: Proceedings of SIGGRAPH, pp. 330–338 (2002)Google Scholar
  25. 25.
    Aanaes, H., Baerentzen, J.A.: Pseudo-normal for signed distance computation. In: Proceedings of Vision, Modeling and Visualization, pp. 407–413 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shiguang Liu
    • 1
    • 2
  • Tai An
    • 1
  • Zheng Gong
    • 3
  • Ichiro Hagiwara
    • 3
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina
  2. 2.State Key Lab of Virtual Reality Technology and SystemBeihang UniversityBeijingChina
  3. 3.Department of Mechanical Science and EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations