On the Decidability and Complexity of Identity Knowledge Representation

  • Klaus-Dieter Schewe
  • Qing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7238)


Identity knowledge is the knowledge that relates to various aspects of the identification of real-world objects. It can be acquired through the process of identifying objects from a knowledge management point of view. In this paper we present a simple yet expressive framework for representing identity knowledge. Knowledge patterns, as the building blocks of the framework, have the capability of capturing identity knowledge at an arbitrary level of abstraction. However, the combined use of pattern formula and pattern relation in knowledge patterns may yield disjunction and a restricted form of negation. We thus investigate the containment problem of knowledge patterns to find a decision procedure for containment and equivalence between knowledge patterns. Our result shows that the containment problem for knowledge patterns is not only decidable but also tractable.


Knowledge Model Pattern Relation Conjunctive Query Knowledge Pattern Containment Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Credit where credit is due. Nature 462(7275), 825 (2009)Google Scholar
  2. 2.
    Fischer Identity as a Service. Architecture Overview for Client Organizations. White paper, Fischer International Identity (2009)Google Scholar
  3. 3.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  4. 4.
    Aho, A., Sagiv, Y., Ullman, J.: Equivalences among relational expressions. SIAM Journal on Computing 8, 218 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aho, A.V., Ullman, J.D.: Universality of data retrieval languages. In: Proceedings of Principles of Programming Languages, pp. 110–119. ACM (1979)Google Scholar
  6. 6.
    Arasu, A., Chaudhuri, S., Kaushik, R.: Transformation-based framework for record matching. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 40–49. IEEE Computer Society (2008)Google Scholar
  7. 7.
    Arasu, A., Kaushik, R.: A grammar-based entity representation framework for data cleaning. In: Proceedings of the 35th SIGMOD International Conference on Management of Data, SIGMOD 2009, pp. 233–244. ACM (2009)Google Scholar
  8. 8.
    Baader, F.: Logic-Based Knowledge Representation. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 13–41. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In: Proceedings of the 2004 ACM SIGKDD Workshop on Link Analysis and Group Detection (2004)Google Scholar
  10. 10.
    Bhattacharya, I., Getoor, L.: Iterative record linkage for cleaning and integration. In: Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD 2004, pp. 11–18. ACM (2004)Google Scholar
  11. 11.
    Calvanese, D., De Giacomo, G., Vardi, M.Y.: Decidable containment of recursive queries. Theor. Comput. Sci. 336, 33–56 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, STOC 1977, pp. 77–90. ACM (1977)Google Scholar
  13. 13.
    Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logics. Principles of Knowledge Representation, 191–236 (1996)Google Scholar
  14. 14.
    Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statistical Association 64(328), 1183–1210 (1969)CrossRefGoogle Scholar
  15. 15.
    Klug, A.: On conjunctive queries containing inequalities. J. ACM 35, 146–160 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Leclère, M., Mugnier, M.-L.: Some Algorithmic Improvements for the Containment Problem of Conjunctive Queries with Negation. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 404–418. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Levy, A.Y., Rousset, M.-C.: Verification of knowledge bases based on containment checking. Artif. Intell. 101, 227–250 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nash, A., Ludäscher, B.: Processing Unions of Conjunctive Queries with Negation under Limited Access Patterns. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 422–440. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Newcombe, H., Kennedy, J., Axford, S., James, A.: Automatic linkage of vital records. Science 130(3381), 954–959 (1959)CrossRefGoogle Scholar
  20. 20.
    Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and citation matching. In: NIPS. MIT Press (2003)Google Scholar
  21. 21.
    Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and difference operators. Journal of the ACM 27, 633–655 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 269–278. ACM (2002)Google Scholar
  23. 23.
    Shmueli, O.: Equivalence of datalog queries is undecidable. J. Log. Program. 15, 231–241 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Singla, P., Domingos, P.: Object Identification with Attribute-Mediated Dependences. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 297–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information integration. Information Systems 26 (2001)CrossRefGoogle Scholar
  26. 26.
    Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci. 239, 189–210 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Vardi, M.: The complexity of relational query languages. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 137–146. ACM (1982)Google Scholar
  28. 28.
    Wei, F., Lausen, G.: Containment of Conjunctive Queries with Safe Negation. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 346–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Klaus-Dieter Schewe
    • 1
  • Qing Wang
    • 2
  1. 1.Software Competence CenterHagenberg and Johannes-Kepler-UniversityLinzAustria
  2. 2.Department of Information ScienceUniversity of OtagoDunedinNew Zealand

Personalised recommendations