Fuel Deposition Rate and Energy Efficiency of Stopovers

  • Nikita Chernetsov


In this chapter I review the methods of estimating the fuel deposition rate (FDR) of stopover migrants. These methods are based either on body mass change in the birds captured at least twice, or on body mass relationship with the time of day in single captures, or on analysis of metabolites in blood plasma. There is no perfect method; every approach has its benefits and pitfalls. The empirical values of the FDR reported in the literature are reviewed, and various factors that influence the FDR during migratory stopovers are discussed. Very often the FDR does not remain constant throughout stopover: it is low or even negative during 1–2 days after arrival but subsequently increases. It may also drop again towards the end of stopover. The ecological and behavioural causes and implications are discussed.


Lean Body Mass Stopover Site Pied Flycatcher Fuel Store Body Mass Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144CrossRefGoogle Scholar
  2. Baggot GK (1986) The fat contents and flight ranges of four warbler species on migration in North Wales. Ring Migr 7:25–36CrossRefGoogle Scholar
  3. Bairlein F (1987) The migratory strategy of the garden warbler: a survey of field and laboratory data. Ring Migr 8:59–72CrossRefGoogle Scholar
  4. Bairlein F (1995) Manual of field methods, European-African songbird migration network. Institut für Vogelforschung, WilhelmshavenGoogle Scholar
  5. Bairlein F (1998) The European-African songbird migration network: new challenges for large-scale study of bird migration. Biol Cons Fauna 102:13–27Google Scholar
  6. Bairlein F (2000) Photoperiode und Nahrungsangebot beeinflüssen zugzeitliche Fettdeposition. Jahresbericht Institut für Vogelforschung 4:5Google Scholar
  7. Bairlein F, Totzke U (1992) New aspects on migratory physiology of trans-Saharan passerine migrants. Ornis Scand 23:244–250CrossRefGoogle Scholar
  8. Balança G, Schaub M (2005) Post-breeding migration ecology of reed Acrocephalus scirpaceus, moustached A. melanopogon and Cetti’s warbler Cettia cetti at a Mediterranean stopover site. Ardea 93:245–257Google Scholar
  9. Bardin AV (1998) Opyt prilozheniya ridit-analyza k dannym vizualnoy otsenki zhirovykh reservov na primere analyza sutochnoy dinamiki zhirnosti bolshikh sinits Parus major v zimniy period (Application of ridit analysis to subcutaneous lipid data using daily fat deposit variation in the Great Tit Parus major during winter as an example). Russ J Ornithol 49:17–24Google Scholar
  10. Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K (2000) Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc Lond B 267:191–195CrossRefGoogle Scholar
  11. Battley PF, Dietz MW, Piersma T, Dekinga A, Tang S, Hulsman K (2001) Is long-distance bird flight equivalent to a high-energy fast? Body composition changes in freely migrating and captive fasting knots. Physiol Biochem Zool 74:435–449PubMedCrossRefGoogle Scholar
  12. Bauchinger U, Biebach H (1998) The role of protein during migration in passerine birds. Biol Conserv Fauna 102:299–305Google Scholar
  13. Bauchinger U, Biebach H (2001) Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration. J Comp Physiol B 171:293–301PubMedCrossRefGoogle Scholar
  14. Bauchinger U, Biebach H (2005) Phenotypic flexibility of skeletal muscles during long-distance migration of garden warblers: muscle changes are differentially related to body mass. Annals New York Acad Sci 1046:271–281CrossRefGoogle Scholar
  15. Bauchinger U, Wohlmann A, Biebach H (2005) Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology 108:97–106PubMedCrossRefGoogle Scholar
  16. Bayly NJ (2006) Optimality in avian migratory fuelling behaviour: a study of a trans-Saharan migrant. Anim Behav 71:173–182CrossRefGoogle Scholar
  17. Bayly NJ (2007) Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, is not triggered by food availability alone. Anim Behav 74:471–479CrossRefGoogle Scholar
  18. Bayly NJ, Rumsey SJR (2007) Grasshopper warbler Locustella naevia autumn migration—findings from a study in southeast Britain. Ring Migr 23:147–155CrossRefGoogle Scholar
  19. Bensch S, Nielsen B (1999) Autumn migration speed of juvenile reed and sedge warblers in relation to date and fat loads. Condor 101:153–156CrossRefGoogle Scholar
  20. Bensch S, Hasselquist D, Hedenström A, Ottosson U (1991) Rapid moult among Palaearctic passerines in West Africa: an adaptation to the oncoming dry season? Ibis 133:47–52CrossRefGoogle Scholar
  21. Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12:1–12CrossRefGoogle Scholar
  22. Biebach H (1996) Energetics of winter and migratory fattening. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, NYGoogle Scholar
  23. Biebach H (1998) Phenotypic organ flexibility in garden warblers Sylvia borin during long-distance migration. J Avian Biol 29:529–535CrossRefGoogle Scholar
  24. Brensing D (1989) Ökologische Untersuchungen der Tagesperiodik von Kleinvögeln. Ökol Vögel (Ecol Birds) 11:1–148Google Scholar
  25. Bulyuk VN, Tsvey A (2006) Timing of nocturnal autumn migratory departures in juvenile European robins (Erithacus rubecula) and endogenous and external factors. J Ornithol 147:298–309CrossRefGoogle Scholar
  26. Carpenter FL, Hixon MA, Russel RW, Paton DC, Temeles EJ (1993) Interference asymmetries among age-classes of rufous hummingbirds during migratory stopover. Behav Ecol Sociobiol 33:297–304Google Scholar
  27. Cerasale DJ, Guglielmo CJ (2006) Plasma metabolite profiles: effects of dietary phospholipids in a migratory passerine (Zonotrichia leucophrys gambelii). Physiol Biochem Zoology 79:754–762CrossRefGoogle Scholar
  28. Chen C-C, Barrow WC Jr, Ouchley K, Hamilton RB (2011) Search behavior of arboreal insectivorous migrants at Gulf coast stopover sites in spring. Wilson J Ornithol 123:347–359CrossRefGoogle Scholar
  29. Chernetsov N (1998) Autumn migration strategies of reed warblers (Acrocephalus scirpaceus) and sedge warblers (A. schoenobaenus) within Europe. In: Costa LT, Costa H, Araújo M, Silva MA (eds) Simpósio sobre Aves Migradoras na Península Ibérica. SPEA e Universidade de Évora, ÉvoraGoogle Scholar
  30. Chernetsov N (2001) Fuel storage in migrating blackcaps Sylvia atricapilla in autumn: which factors are important? In: Both C, Piersma T (eds) The avian calendar: exploring biological hurdles in the annual cycle. Programme and abstracts of 3rd EOU conference, Haren/GroningenGoogle Scholar
  31. Chernetsov NS (2003) Ekologiya i povedenie vorobyinykh ptits na migratsionnykh ostanovkakh: postanovka problemy (Stopover ecology and behaviour of passerine migrants: methodological issues of studies). Ornithologia (Moscow) 30:136–146Google Scholar
  32. Chernetsov N (2010) Migratory stopovers of Wrens Troglodytes troglodytes on the south-eastern Baltic coast. Avian Ecol Behav 17:13–22Google Scholar
  33. Chernetsov N, Manukyan A (1999a) Feeding strategy of Reed Warblers Acrocephalus scirpaceus on migration. Avian Ecol Behav 3:59–68Google Scholar
  34. Chernetsov N, Manukyan A (1999b) Foraging strategies of the Sedge Warbler (Acrocephalus schoenobaenus) and the Reed Warbler (A. scirpaceus) on migration. Proc Zool Inst 281:101–106Google Scholar
  35. Chernetsov N, Manukyan A (2000) Foraging strategy of the Sedge Warbler (Acrocephalus schoenobaenus) on migration. Vogelwarte 40:189–197Google Scholar
  36. Chernetsov N, Titov N (2000) Design of a trapping station for studying migratory stopovers by capture-mark-recapture analysis. Avian Ecol Behav 5:27–33Google Scholar
  37. Chernetsov N, Titov N (2001) Migratory stopovers of juvenile Blackcaps Sylvia atricapilla in autumn: stopover length, fuel deposition rate, and an attempt to predict departure body mass. Avian Ecol Behav 6:27–28Google Scholar
  38. Chernetsov N, Bulyuk VN, Ktitorov P (2007) Migratory stopovers of passerines in an oasis at the crossroad of the African and Indian flyways. Ring Migr 23:243–251CrossRefGoogle Scholar
  39. Cuadrado M (1997) Why are migrant robins (Erithacus rubecula) territorial in winter?: the importance of the anti-predatory behaviour. Ethol Ecol Evol 9:77–88CrossRefGoogle Scholar
  40. Dierschke V (2003) Predation hazard during migratory stopover: are light or heavy birds under risk? J Avian Biol 24:24–29CrossRefGoogle Scholar
  41. Dolnik VR (1975) Migratsionnoye sostoyanie ptits (Migratory disposition of birds). Nauka, MoscowGoogle Scholar
  42. Dolnik VR, Gavrilov VM (1973a) Caloric equivalent of body weight variation in chaffinches fringilla coelebs). In: Bykhovskii BE (ed) Bird migrations, ecological and physiological factors. Halstead Press, NYGoogle Scholar
  43. Dolnik VR, Gavrilov VM (1973b) Energy metabolism during flight of some passerines. In: Bykhovskii BE (ed) Bird migrations, ecological and physiological factors. Halstead Press, NYGoogle Scholar
  44. Dunn EH (2000) Temporal and spatial patterns in daily mass gain of magnolia warblers during migratory stopover. Auk 117:12–21CrossRefGoogle Scholar
  45. Dunn EH (2001) Mass change during migration stopover: a comparison of species groups and sites. J Field Ornithol 73:419–432Google Scholar
  46. Dunn EH (2002) A cross-Canada comparison of mass change in birds during migration stopover. Wilson Bull 114:368–379CrossRefGoogle Scholar
  47. Eggers S (2000) Compensatory frugivory in migratory Sylvia warblers: geographical responses to season length. J Avian Biol 31:63–74CrossRefGoogle Scholar
  48. Ellegren H (1993) Speed of migration and migratory flight lengths of passerine birds ringed during autumn migration in Sweden. Ornis Scand 24:220–228CrossRefGoogle Scholar
  49. Fransson T (1995) Timing and speed of migration in North and West European populations of Sylvia warblers. J Avian Biol 26:39–48CrossRefGoogle Scholar
  50. Fransson T (1998) Patterns of migratory fuelling in whitethroats Sylvia communis in relation to departure. J Avian Biol 29:569–573CrossRefGoogle Scholar
  51. Fransson T, Weber TP (1997) Migratory fuelling in blackcaps (Sylvia atricapilla) under perceived risk of predation. Behav Ecol Sociobiol 41:75–80CrossRefGoogle Scholar
  52. Gannes LZ (2001) Comparative fuel use of migrating passerines: effects of fat stores, migration distance, and diet. Auk 118:665–677CrossRefGoogle Scholar
  53. Gladwin TW (1963) Increases in weights of Acrocephali. Bird Migr 2:319–324Google Scholar
  54. Grandío JM (1998) Comparacion del peso y su incremento, del tiempo de estancia y de la abundancia del carricerin comun (Acrocephalus schoenobaenus) entre dos zonas de la marisma de Txingudi (N de España). Ardeola 45:137–142Google Scholar
  55. Grosch K (1995) Die Nahrungszusammensetzung rastender Kleinvögel auf der Halbinsel Mettnau. Diplomarbeit, Universität BayreuthGoogle Scholar
  56. Hansson M, Pettersson J (1989) Competition and fat deposition in Goldcrests (Regulus regulus) at a migration stopover site. Vogelwarte 35:21–31Google Scholar
  57. Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166:388–395CrossRefGoogle Scholar
  58. Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29:521–528CrossRefGoogle Scholar
  59. Jenni L, Schwilch R (2001) Plasma metabolite levels indicate change in body mass in reed warblers Acrocephalus scirpaceus. Avian Sci 1:55–65Google Scholar
  60. Jenni-Eiermann S, Jenni L (1991) Metabolic responses to flight and fasting in night-migrating passerines. J Comp Physiol B 161:465–474CrossRefGoogle Scholar
  61. Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the garden warbler. Auk 111:888–899Google Scholar
  62. Jenni-Eiermann S, Jenni L (2003) Interdependence of flight and stopover in migrating birds: possible effects of metabolic constraints during refuelling on flight metabolism. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, BerlinGoogle Scholar
  63. Johnson AB, Winker K (2008) Autumn stopover near the Gulf of Honduras by Nearctic–Neotropic migrants. Wilson J Ornithol 120:277–285CrossRefGoogle Scholar
  64. Karasov WH, Pinshow B (1998) Changes in lean mass and in organs of nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiol Zool 71:435–448PubMedCrossRefGoogle Scholar
  65. Kelly JF, Delay LS, Finch DM (2002) Density-dependent mass gain by Wilson’s warblers during stopover. Auk 119:210–213CrossRefGoogle Scholar
  66. Khlebosolov EI (1993) Stereotip kormovogo povedeniya ptits (Stereotype of foraging behaviour in birds). Uspekhi Sovremennoi Biologii 113:717–730Google Scholar
  67. Khlebosolov EI (1996) Obosnovanie modeli odnomernoy ierarkhicheskoy nishi u ptits (Substantiation of the one-dimensional hierarchical niche model in birds). Uspekhi Sovremennoi Biologii 116:447–462Google Scholar
  68. Khlebosolov EI (2005) Kormovoe povedenie kak vidovaya kharakteristika ptits (Foraging behaviour as a species-specific characteristic of birds). Zool Zhurnal 84:54–62Google Scholar
  69. Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164:362–371CrossRefGoogle Scholar
  70. Klaassen M, Lindström Å (1996) Departure fuel loads in time-minimizing migrating birds can be explained by the energy costs of being heavy. J Theor Biol 183:29–34CrossRefGoogle Scholar
  71. Klaassen M, Lindström Å, Zijlstra R (1997) Composition of fuel stores and digestive limitations to fuel deposition rate in the long-distance migratory thrush nightingale, Luscinia luscinia. Physiol Zool 70:125–133PubMedGoogle Scholar
  72. Klein H, Berthold P, Gwinner E (1971) Vergleichende Untersuchung tageszeitlicher Aktivitätsmuster und tageszeitichen Körpergewichtsänderungen gekäfigter und freilebender Grasmücken (Sylvia). Oecologia 8:218–222CrossRefGoogle Scholar
  73. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950CrossRefGoogle Scholar
  74. Ktitorov P, Bairlein F, Dubinin M (2008) The importance of landscape context for songbirds on migration: body mass gain is related to habitat cover. Landscape Ecol 23:169–179CrossRefGoogle Scholar
  75. Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22CrossRefGoogle Scholar
  76. Leist AJ (2007) The importance of fruit to Swainson’s thrushes, Catharus ustulatus, during fall migration: a field test of plasma metabolite analysis. MSc thesis, Humboldt State UniversityGoogle Scholar
  77. Liechti F (1995) Modelling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. J Avian Biol 26:330–336CrossRefGoogle Scholar
  78. Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211CrossRefGoogle Scholar
  79. Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568CrossRefGoogle Scholar
  80. Lindström Å (1991) Maximum fat deposition rates in migrating birds. Ornis Scand 22:12–19CrossRefGoogle Scholar
  81. Lindström Å (2003) Fuel deposition rates in migrating birds: causes, constraints and consequences. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, BerlinGoogle Scholar
  82. Lindström Å, Piersma T (1993) Mass changes in migrating birds: the evidence for fat and protein storage re-examined. Ibis 135:70–78CrossRefGoogle Scholar
  83. Loria DE, Moore FR (1990) Energy demands of migration on red-eyed vireos, Vireo olivaceus. Behav Ecol 1:24–35CrossRefGoogle Scholar
  84. Mädlow W (1997) Durchzug und Rastverhalten des Rotkehlchens (Erithacus rubecula) im Herbst 1995 auf der Greifswalder Oie: Situation während eines Masseneinzugs. Seevögel 18:75–81Google Scholar
  85. Merom K, Yom-Tov Y, McClery R (2000) Philopatry to stopover site and body condition of transient reed warblers during autumn migration through Israel. Condor 102:441–444CrossRefGoogle Scholar
  86. Moore FR (1994) Resumption of feeding under risk of predation: effect of migratory condition. Anim Behav 48:975–977CrossRefGoogle Scholar
  87. Moore FR, Aborn DA (1996) Time of departure by summer tanagers (Piranga rubra) from a stopover site following spring trans-Gulf migration. Auk 113:949–952Google Scholar
  88. Moore FR, Kerlinger P (1987) Stopover and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 74:47–54CrossRefGoogle Scholar
  89. Moore FR, Wang Y (1991) Evidence of food-based competition among passerine migrants during stopover. Behav Ecol Sociobiol 28:85–90CrossRefGoogle Scholar
  90. Neto JM, Encarnação V, Fearon P, Gosler AG (2008) Autumn migration of Savi’s warblers Locustella luscinioides in Portugal: differences in timing, fuel deposition rate and non-stop flight range between the age classes. Bird Study 55:78–85CrossRefGoogle Scholar
  91. Ottich I, Dierschke V (2003) Exploration of resources modulates stopover behaviour of passerine migrants. J Ornithol 144:307–316Google Scholar
  92. Panov IN, Chernetsov NS (2010) Migratsionnaya strategiya varakushki (Luscinia svecica) v Vostochnoy Fennoskandii. Soobschenie 1: Osnovnye parametry migratsionnykh ostanovok (Migratory strategy of bluethroats, Luscinia svecica, in Eastern Fennoscandia. Part 1: Main stopover parameters). Proc Zool Inst 314:93–104Google Scholar
  93. Pettersson J (1983) Rödhakens Erithacus rubecula höstflyttning vid Ottenby. Vår Fågelvärld 42:333–342Google Scholar
  94. Piersma T (1990) Pre-migratory ‘fattening’ usually involved more than the deposition of fat alone. Ring Migr 11:113–115CrossRefGoogle Scholar
  95. Piersma T (1998) Phenotypic flexibility during migration: physiological optimization contingent on the risks and rewards of fuelling and flight. J Avian Biol 29:511–520CrossRefGoogle Scholar
  96. Piersma T, Gill RE (1998) Guts don’t fly: small digestive organs in obese bar-tailed godwits. Auk 115:196–203Google Scholar
  97. Piersma T, Dietz MW, Ekinga AD, Nebel S, Van Gils J, Battley PF, Spaans B (1999) Reversible size-changes in stomachs of shorebirds: when, to what extent, and why? Acta Ornithol 34:175–181Google Scholar
  98. Rappole JH, Warner DW (1976) Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 26:193–212CrossRefGoogle Scholar
  99. Salewski V (1999) Untersuchungen zur Überwinterungsökologie paläarktischer Singvögel in Westafrika unter besonderer Berücksichtigung der Wechselwirkungen zu residenten Arten. W&T Verlag, BerlinGoogle Scholar
  100. Salewski V, Schaub M (2007) Stopover duration of Palearctic passerine migrants in the western Sahara—independent of fat stores? Ibis 149:223–236CrossRefGoogle Scholar
  101. Salewski V, Almasi B, Heuman A, Thoma M, Schlageter A (2007) Agonistic behaviour of Palaearctic passerine migrants at a stopover site suggests interference competition. Ostrich 78:349–355CrossRefGoogle Scholar
  102. Sapir N, Tsurim I, Gal B, Abramsky Z (2004) The effect of water availability on fuel deposition of two staging Sylvia warblers. J Avian Biol 35:25–32CrossRefGoogle Scholar
  103. Schaub M, Jenni L (2000) Fuel deposition of three passerine bird species along migration route. Oecologia 122:306–317CrossRefGoogle Scholar
  104. Schaub M, Jenni L (2001) Variation of fuelling rates among sites, days and individuals in migrating passerine birds. Funct Ecol 15:584–594CrossRefGoogle Scholar
  105. Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237CrossRefGoogle Scholar
  106. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment, 5th edn. Cambridge University Press, NYGoogle Scholar
  107. Schwilch R, Grattarola A, Spina F, Jenni L (2002) Protein loss during long-distance migratory flight in passerine birds: adaptation and constraints. J Exp Biol 205:687–695PubMedGoogle Scholar
  108. Schwilch R, Jenni L (2001) Low initial refueling rate at stopover sites: a methodological effect? Auk 118:698–708CrossRefGoogle Scholar
  109. Seewagen CL, Slayton EJ (2008) Mass changes of migratory landbirds during stopovers in a New York City park. Wilson J Ornithol 120:296–303CrossRefGoogle Scholar
  110. Stevens L (2004) Avian biochemistry and molecular biology. Cambridge University Press, CambridgeGoogle Scholar
  111. Szulc-Olech B (1965) The resting period of migrant robins on autumn passage. Bird Study 12:1–7CrossRefGoogle Scholar
  112. Tellería JL, Péres-Tris J (2004) Consequences of the settlement of migrant European robins Erithacus rubecula in wintering habitats occupied by conspecific residents. Ibis 146:258–268CrossRefGoogle Scholar
  113. Titov N (1999a) Individual home ranges of Robins Erithacus rubecula at stopovers during autumn migration. Vogelwelt 120:237–242Google Scholar
  114. Titov N (1999b) Fat level and temporal pattern of diurnal movements of Robins (Erithacus rubecula) at an autumn stopover site. Avian Ecol Behav 2:89–99Google Scholar
  115. Titov N (2000) Interaction between foraging strategy and autumn migratory strategy in the robin Erithacus rubecula. Avian Ecol Behav 5:35–44Google Scholar
  116. Titov N, Chernetsov N (1999a) How body mass should be compared to structural size when calculating condition index? Avian Ecol Behav 3:111–113Google Scholar
  117. Titov NV, Chernetsov NS (1999b) Stokhasticheskie modeli kak novy metod otsenki prodolzhitelnosti migratsionnykh ostanovok ptits (Stochastic models as a new method for estimating length of migratory stopovers in birds). Uspekhi Sovremennoi Biologii 119:396–403Google Scholar
  118. Tsvey AL (2008) Strategii migratsii zaryanki (Erithacus rubecula) v vostochnoy Pribaltike (Migratory strategies of the European robin (Erithacus rubecula) in the eastern Baltic). Dissertation, Zoological Institute RASGoogle Scholar
  119. Tsvey A, Bulyuk VN, Kosarev V (2007) Influence of energy condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674CrossRefGoogle Scholar
  120. von Stünzner-Karbe D (1996) Territorialität, Habitatnutzung und Furagierverhalten überwinternder Trauerschnäpper (Ficedula hypoleuca) in West-Afrika. Diplomarbeit, Universität BayreuthGoogle Scholar
  121. Wang Y, Moore FR (1997) Spring stopover on intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. Auk 114:263–278Google Scholar
  122. Wang Y, Moore FR (2005) Long-distance bird migrants adjust their foraging behavior in relation to energy stores. Acta Zoologica Sinica 51:12–23Google Scholar
  123. Williams TD, Guglielmo CG, Egeler O, Martyniuk CJ (1999) Plasma lipid metabolites provide information on mass change over several days in captive Western sandpipers. J Avian Biol 33:1–9Google Scholar
  124. Winker K (1995) Autumn stopover on the Isthmus of Tehuantepec by woodland Nearctic–Neotropic migrants. Auk 112:690–700Google Scholar
  125. Winker K, Warner DW, Weisbrod AR (1992) Daily mass gains among woodland migrants at an inland stopover site. Auk 109:853–862Google Scholar
  126. Yablonkevich ML, Shapoval AP (1987) Massa tela, energeticheskie rezervy i povedenie nekotorykh vidov nochnykh migrantov vo vremya dnevnoy ostanovki v period osennego proleta na ostrove Barsakelmes Aralskogo morya (Body mass, energy reserves and behaviour of some nocturnal migrants during at daytime stopover during autumn passage across the Aral Sea island, Barsakelmes). Proc Zool Inst 173:13–47Google Scholar
  127. Yablonkevich ML, Bolshakov CV, Bulyuk VN, Eliseev DO, Efremov VD, Shamuradov AK (1985) Massa tela i zhirnost’ ptits, proletayuschikh vesnoy cherez pustyni Sredney Azii (Body weight and fat of birds passing across the Middle Asia deserts in spring). Proc Zool Inst 137:11–59Google Scholar
  128. Yosef R, Wineman A (2010) Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat, Israel. Naturwissenschaften 74:360–367Google Scholar
  129. Zimin VB (2003) Body mass variability in juvenile Robins Erithacus rubecula in the Ladoga area. Avian Ecol Behav 10:1–31Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biological Station RybachyZoological InstituteSt. PetersburgRussia

Personalised recommendations