Advertisement

Identity-Based Encryption Resilient to Continual Auxiliary Leakage

  • Tsz Hon Yuen
  • Sherman S. M. Chow
  • Ye Zhang
  • Siu Ming Yiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

We devise the first identity-based encryption (IBE) that remains secure even when the adversary is equipped with auxiliary input (STOC ’09) – any computationally uninvertible function of the master secret key and the identity-based secret key. In particular, this is more general than the tolerance of Chow et al.’s IBE schemes (CCS ’10) and Lewko et al.’s IBE schemes (TCC ’11), in which the leakage is bounded by a pre-defined number of bits; yet our construction is also fully secure in the standard model based on only static assumptions, and can be easily extended to give the first hierarchical IBE with auxiliary input.

Furthermore, we propose the model of continual auxiliary leakage (CAL) that can capture both memory leakage and continual leakage. The CAL model is particularly appealing since it not only gives a clean definition when there are multiple secret keys (the master secret key, the identity-based secret keys, and their refreshed versions), but also gives a generalized definition that does not assume secure erasure of secret keys after each key update. This is different from previous definitions of continual leakage (FOCS ’10, TCC ’11) in which the length-bounded leakage is only the secret key in the current time period. Finally, we devise an IBE scheme which is secure in this model. A major tool we use is the modified Goldreich-Levin theorem (TCC ’10), which until now has only been applied in traditional public-key encryption with a single private key.

Keywords

Auxiliary Input Leakage Model Challenge Ciphertext Common Reference String Blinding Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS 2010. IEEE Computer Society (2010)Google Scholar
  7. 7.
    Chow, S.S.M.: Removing Escrow from Identity-Based Encryption. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS 2010, pp. 152–161. ACM (2010)Google Scholar
  9. 9.
    Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS 2010, pp. 511–520. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  12. 12.
    Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: Fortnow, L., Vadhan, S.P. (eds.) STOC 2011, pp. 725–734. ACM (2011)Google Scholar
  13. 13.
    Lewko, A.B., Rouselakis, Y., Waters, B.: Achieving Leakage Resilience through Dual System Encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  17. 17.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Tsz Hon Yuen
    • 1
  • Sherman S. M. Chow
    • 2
  • Ye Zhang
    • 3
  • Siu Ming Yiu
    • 1
  1. 1.University of Hong KongHong Kong
  2. 2.University of WaterlooCanada
  3. 3.Pennsylvania State UniversityUSA

Personalised recommendations