Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE

  • Gilad Asharov
  • Abhishek Jain
  • Adriana López-Alt
  • Eran Tromer
  • Vinod Vaikuntanathan
  • Daniel Wichs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)


Fully homomorphic encryption (FHE) enables secure computation over the encrypted data of a single party. We explore how to extend this to multiple parties, using threshold fully homomorphic encryption (TFHE). In such scheme, the parties jointly generate a common FHE public key along with a secret key that is shared among them; they can later cooperatively decrypt ciphertexts without learning anything but the plaintext. We show how to instantiate this approach efficiently, by extending the recent FHE schemes of Brakerski, Gentry and Vaikuntanathan (CRYPTO ’11, FOCS ’11, ITCS ’12) based on the (ring) learning with errors assumption. Our main tool is to exploit the property that such schemes are additively homomorphic over their keys.

Using TFHE, we construct simple multiparty computation protocols secure against fully malicious attackers, tolerating any number of corruptions, and providing security in the universal composability framework. Our protocols have the following properties: Low interaction: 3 rounds of interaction given a common random string, or 2 rounds with a public-key infrastructure. Low communication : independent of the function being computed (proportional to just input and output sizes). Cloud-assisted computation: the bulk of the computation can be efficiently outsourced to an external entity (e.g. a cloud service) so that the computation of all other parties is independent of the complexity of the evaluated function.


Homomorphic Encryption Honest Party Random Coin Cryptology ePrint Archive Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274 (2005)Google Scholar
  3. 3.
    Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold fhe. Cryptology ePrint Archive, Report 2011/613 (2011),
  4. 4.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513 (1990)Google Scholar
  5. 5.
    Bendlin, R., Damgård, I.: Threshold Decryption and Zero-Knowledge Proofs for Lattice-Based Cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS (2012)Google Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: ITCS (2012)Google Scholar
  9. 9.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: FOCS (2011)Google Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure Multi-party Computation Minimizing Online Rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 268–286. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535 (2011),
  14. 14.
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: TCC (2012)Google Scholar
  15. 15.
    Damgård, I., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Applications of Pedersen’s Distributed Key Generation Protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 373–390. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  18. 18.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  20. 20.
    Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive, Report 2011/456 (2011),
  21. 21.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing without Simultaneous Interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)Google Scholar
  23. 23.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. Cryptology ePrint Archive, Report 2011/272 (2011),
  24. 24.
    Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty computation from fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/663 (2011),
  26. 26.
    Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and secure computation. eprint 2011/454 (2011)Google Scholar
  29. 29.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009)Google Scholar
  30. 30.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  31. 31.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations on Secure Computation, pp. 169–179. Academia Press (1978)Google Scholar
  32. 32.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)Google Scholar
  34. 34.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Gilad Asharov
    • 1
  • Abhishek Jain
    • 2
  • Adriana López-Alt
    • 3
  • Eran Tromer
    • 4
  • Vinod Vaikuntanathan
    • 5
  • Daniel Wichs
    • 6
  1. 1.Bar-Ilan UniversityUSA
  2. 2.University of California Los Angeles (UCLA)USA
  3. 3.New York University (NYU)USA
  4. 4.Tel Aviv UniversityIsrael
  5. 5.University of TorontoCanada
  6. 6.IBM Research, T.J. WatsonUSA

Personalised recommendations