Advertisement

Statistical Tools Flavor Side-Channel Collision Attacks

  • Amir Moradi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

By examining the similarity of side-channel leakages, collision attacks evade the indispensable hypothetical leakage models of multi-query based side-channel distinguishers like correlation power analysis and mutual information analysis attacks. Most of the side-channel collision attacks compare two selective observations, what makes them similar to simple power analysis attacks. A multi-query collision attack detecting several collisions at the same time by means of comparing the leakage averages was presented at CHES 2010. To be successful this attack requires the means of the side-channel leakages to be related to the processed intermediate values. It therefore fails in case the mean values and processed data are independent, even though the leakages and the processed values follow a clear relationship. The contribution of this article is to extend the scope of this attack by employing additional statistics to detect the colliding situations. Instead of restricting the analyses to evaluation of means, we propose to employ higher-order statistical moments and probability density functions as the figure of merit to detect collisions. Thus, our new techniques remove the shortcomings of the existing correlation collision attacks using first-order moments. In addition to the theoretical discussion of our approach, practical evidence of its suitability for side-channel evaluation is provided. We provide four case studies, including three FPGA-based masked hardware implementations and a software implementation using boolean masking on a microcontroller, to support our theoretical groundwork.

Keywords

Clock Cycle Collision Detection Central Moment Target Device Attack Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Side-channel Attack Standard Evaluation Board (SASEBO). Further information are available via, http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
  2. 2.
    Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Kizhvatov, I.: Beyond the Limits of DPA: Combined Side-Channel Collision Attacks. IEEE Transactions on Computers (2011), (to appear), A draft version at, http://eprint.iacr.org/2010/590
  5. 5.
    Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008); the corrected version at http://eprint.iacr.org/2009/011 CrossRefGoogle Scholar
  9. 9.
    Cha, S.-H.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. Journal of Mathematical Models and Methods in Applied Sciences 1, 300–307 (2007)Google Scholar
  10. 10.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Jeffreys, H.: An Invariant Form for the Prior Probability in Estimation Problems. Royal Society of London Proceedings Series A 186, 453–461 (1946)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010), The extended version at http://eprint.iacr.org/2010/297 CrossRefGoogle Scholar
  17. 17.
    Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches. J. Cryptology 24, 292–321 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-Channel Resistant Crypto for less than 2,300 GE. J. Cryptology 24, 322–345 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers: Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 354–372. Springer, Heidelberg (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Amir Moradi
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr University BochumGermany

Personalised recommendations