Skip to main content

Narrow-Bicliques: Cryptanalysis of Full IDEA

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7237)

Abstract

We apply and extend the recently introduced biclique framework to IDEA and for the first time describe an approach to noticeably speed-up key-recovery for the full 8.5 round IDEA.

We also show that the biclique approach to block cipher cryptanalysis not only obtains results on more rounds, but also improves time and data complexities over existing attacks. We consider the first 7.5 rounds of IDEA and demonstrate a variant of the approach that works with practical data complexity.

The conceptual contribution is the narrow-bicliques technique: the recently introduced independent-biclique approach extended with ways to allow for a significantly reduced data complexity with everything else being equal. For this we use available degrees of freedom as known from hash cryptanalysis to narrow the relevant differential trails. Our cryptanalysis is of high computational complexity, and does not threaten the practical use of IDEA in any way, yet the techniques are practically verified to a large extent.

Keywords

  • block ciphers
  • bicliques
  • meet-in-the-middle
  • IDEA
  • key recovery

References

  1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 578–597. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  2. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New data-efficient attacks on 6-round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011), http://eprint.iacr.org/

  3. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New data-efficient attacks on reduced-round idea. Cryptology ePrint Archive, Report 2011/417 (2011), http://eprint.iacr.org/

  4. Biryukov, A., Nakahara Jr, J., Preneel, B., Vandewalle, J.: New Weak-Key Classes of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  6. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  8. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic Search of Attacks on Round-Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

    Google Scholar 

  9. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of Rounds. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

    Google Scholar 

  10. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

    Google Scholar 

  11. Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  12. Diffie, W., Hellman, M.: Special feature exhaustive cryptanalysis of the NBS Data Encryption Standard. Computer 10, 74–84 (1977)

    CrossRef  Google Scholar 

  13. Dunkelman, O., Sekar, G., Preneel, B.: Improved Meet-in-the-Middle Attacks on Reduced-Round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  15. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  16. Nakahara Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  17. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family (2011), http://eprint.iacr.org/2011/286.pdf

  18. Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

    Google Scholar 

  19. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  20. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impossible Differential Cryptanalysis of 7-Round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  21. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Google Scholar 

  22. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The Cipher SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  23. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  24. Sun, X., Lai, X.: The Key-Dependent Attack on Block Ciphers. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 19–36. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  25. Wegener, I., Woelfel, P.: New results on the complexity of the middle bit of multiplication. Computational Complexity 16(3), 298–323 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 International Association for Cryptologic Research

About this paper

Cite this paper

Khovratovich, D., Leurent, G., Rechberger, C. (2012). Narrow-Bicliques: Cryptanalysis of Full IDEA. In: Pointcheval, D., Johansson, T. (eds) Advances in Cryptology – EUROCRYPT 2012. EUROCRYPT 2012. Lecture Notes in Computer Science, vol 7237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29011-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29011-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29010-7

  • Online ISBN: 978-3-642-29011-4

  • eBook Packages: Computer ScienceComputer Science (R0)