Robust Coin Flipping

  • Gene S. Kopp
  • John D. Wiltshire-Gordon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)


Alice seeks an information-theoretically secure source of private random data. Unfortunately, she lacks a personal source and must use remote sources controlled by other parties. Alice wants to simulate a coin flip of specified bias α, as a function of data she receives from p sources; she seeks privacy from any coalition of r of them. We show: If p/2 ≤ r < p, the bias can be any rational number and nothing else; if 0 < r < p/2, the bias can be any algebraic number and nothing else. The proof uses projective varieties, convex geometry, and the probabilistic method. Our results improve on those laid out by Yao, who asserts one direction of the r = 1 case in his seminal paper [yao82]. We also provide an application to secure multiparty computation.


multiparty computation outsourcing randomness biased coin flip algebraic number projective duality hyperdeterminant 


  1. [Cay45]
    Cayley, A.: On the theory of linear transformations. Cambridge Math. J. 4 (1845)Google Scholar
  2. [Dav54]
    Davenport, H.: Simultaneous Diophantine approximation. In: Proc. of ICM, vol. 3, pp. 9–12 (1954)Google Scholar
  3. [GKZ94]
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser (1994)Google Scholar
  4. [GM82]
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proc. of ACM Symp. on TOC (1982)Google Scholar
  5. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proc. of ACM Symp. on TOC, pp. 218–229. ACM Press (1987)Google Scholar
  6. [Har92]
    Harris, J.: Algebraic Geomerty: A First Course. Springer (1992)Google Scholar
  7. [Lag82]
    Lagarias, J.C.: Best simultaneously Diophantine approximations. I. growth rates of best approximation denominators. Trans. of AMS 272(2), 545–554 (1982)MathSciNetzbMATHGoogle Scholar
  8. [Lin84]
    Lind, D.A.: The entropies of topological Markov shifts and a related class of algebraic integers. Ergodic Theory Dynam. Systems 4(2), 283–300 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [LM04]
    Lipton, R.J., Markakis, E.: Nash equilibria Via polynomial equations. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 413–422. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. [Mum95]
    Mumford, D.: Algebraic Geometry I: Complex Projective Varieties. Springer (1995)Google Scholar
  11. [NS06]
    Nogueira, A., Sevennec, B.: Multidimensional farey partitions. Indag. Mathem. 17(3), 437–456 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Rok49]
    Rokhlin, V.A.: On the fundamental ideas of measure theory. Mat. Sbornik N.S. 25(67), 107–150 (1949)MathSciNetGoogle Scholar
  13. [Sha79]
    Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)MathSciNetzbMATHGoogle Scholar
  14. [Yao82]
    Yao, A.C.: Protocols for secure computations (extended abstract). In: Proc. of FOCS, pp. 160–164 (November 1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Gene S. Kopp
    • 1
  • John D. Wiltshire-Gordon
    • 1
  1. 1.University of MichiganUSA

Personalised recommendations