Advertisement

Geo-Location Estimation of Flickr Images: Social Web Based Enrichment

  • Claudia Hauff
  • Geert-Jan Houben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)

Abstract

Estimating the geographic location of images is a task which has received a lot of attention in recent years. Large numbers of items uploaded to Flickr do not contain GPS-based latitude/longitude coordinates, although it would be beneficial to obtain such geographic information for a wide variety of potential applications such as travelogues and visual place descriptions. While most works in this area consider an image’s textual meta-data to estimate its geo-location, we consider an additional textual dimension: the image owner’s traces on the social Web, in particular on the micro-blogging platform Twitter. We investigate the following question: does enriching an image’s available textual meta-data with a user’s tweets improve the accuracy of the geographic location estimation process? The results show that this is indeed the case; in an oracle setting, the median error in kilometres decreases by 87%, in the best automatic approach the median error decreases by 56%.

Keywords

Language Model Median Error Training Corpus Geographic Spread Training Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Araújo, S., Gao, Q., Houben, G.-J.: Analyzing Cross-System User Modeling on the Social Web. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 28–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abel, F., Henze, N., Herder, E., Krause, D.: Interweaving Public User Profiles on the Web. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 16–27. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM 2010, pp. 759–768 (2010)Google Scholar
  4. 4.
    Choi, J., Janin, A., Friedland, G.: The 2010 ICSI Video Location Estimation System. In: MediaEval 2010 Workshop (2010)Google Scholar
  5. 5.
    Clements, M., Serdyukov, P., de Vries, A.P., Reinders, M.J.T.: Finding Wormholes with Flickr Geotags. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 658–661. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Clements, M., Serdyukov, P., de Vries, A.P., Reinders, M.J.T.: Using flickr geotags to predict user travel behaviour. In: SIGIR 2010, pp. 851–852 (2010)Google Scholar
  7. 7.
    Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proceedings of Uncertainty in Artificial Intelligence, UAI, Stockholm (1999)Google Scholar
  8. 8.
    Iofciu, T., Fankhauser, P., Abel, F., Bischoff, K.: Identifying users across social tagging systems (2011)Google Scholar
  9. 9.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: 9th WebKDD/1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65 (2007)Google Scholar
  10. 10.
    Kelm, P., Schmiedeke, S., Sikora, T.: Multi-modal, multi-resource methods for placing flickr videos on the map. In: ICMR 2011, pp. 52:1–52:8 (2011)Google Scholar
  11. 11.
    Kendall, M.: A new measure of rank correlation. Biometrika 30(1-2), 81–93 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lu, X., Pang, Y., Hao, Q., Zhang, L.: Visualizing textual travelogue with location-relevant images. In: LBSN 2009, pp. 65–68 (2009)Google Scholar
  13. 13.
    Naaman, M., Boase, J., Lai, C.-H.: Is it really about me?: message content in social awareness streams. In: CSCW 2010, pp. 189–192 (2010)Google Scholar
  14. 14.
    Rae, A., Murdock, V., Serdyukov, P., Kelm, P.: Working Notes for the Placing Task at MediaEval 2011. In: MediaEval 2011 Workshop (2011)Google Scholar
  15. 15.
    Serdyukov, P., Murdock, V., van Zwol, R.: Placing flickr photos on a map. In: SIGIR 2009, pp. 484–491 (2009)Google Scholar
  16. 16.
    Van Laere, O., Schockaert, S., Dhoedt, B.: Combining Multi-resolution Evidence for Georeferencing Flickr Images. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 347–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Van Laere, O., Schockaert, S., Dhoedt, B.: Finding locations of flickr resources using language models and similarity search. In: ICMR 2011, pp. 48:1–48:8 (2011)Google Scholar
  18. 18.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: SIGIR 2001, pp. 334–342 (2001)Google Scholar
  19. 19.
    Zhao, D., Rosson, M.B.: How and why people twitter: the role that micro-blogging plays in informal communication at work. In: GROUP 2009, pp. 243–252 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudia Hauff
    • 1
  • Geert-Jan Houben
    • 1
  1. 1.WISDelft University of TechnologyDelftThe Netherlands

Personalised recommendations