Advertisement

Comparing Tweets and Tags for URLs

  • Morgan Harvey
  • Mark Carman
  • David Elsweiler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)

Abstract

The free-form tags available from social bookmarking sites such as Delicious have been shown to be useful for a number of purposes and could serve as a cheap source of metadata about URLs on the web. Unfortunately recent years have seen a reduction in the popularity of such sites, however at the same time microblogging sites such as Twitter have exploded in popularity. On these sites users submit short messages (or “tweets”) about what they are currently reading, thinking and doing and often post URLs.

In this work we look into the similarity between top tags drawn from Delicious and high-frequency terms from tweets to ascertain whether Twitter data could serve as a useful replacement for Delicious. We investigate how these terms compare with web page content, whether or not top Twitter terms converge and determine if the terms are mostly descriptive (and therefore useful) or if they are mostly expressing sentiment or emotion. We discover that provided a large number of tweets are available referring to a chosen URL then the top terms drawn from these tweets are similar to Delicious tags and could therefore be used for similar purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: LREC 2010, p. 1 (2010)Google Scholar
  2. 2.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: WWW 2007, New York, NY, USA, pp. 501–510 (2007)Google Scholar
  3. 3.
    Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H.F., Secret, A.: The world-wide web. Commun. ACM 37, 76–82 (1994)CrossRefGoogle Scholar
  4. 4.
    James Carman, M., Baillie, M., Gwadera, R., Crestani, F.: A statistical comparison of tag and query logs, pp. 123–130 (2009)Google Scholar
  5. 5.
    eMarketer. US twitter usage surpasses earlier estimatesGoogle Scholar
  6. 6.
    Golder, S., Huberman, B.: Usage patterns of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  7. 7.
    Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2005)CrossRefGoogle Scholar
  8. 8.
    Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: WWW 2007, New York, NY, USA, pp. 211–220 (2007)Google Scholar
  9. 9.
    Harvey, M., Ruthven, I., Carman, M.J.: Improving social bookmark search using personalised latent variable language models. In: WSDM 2011, pp. 485–494 (2011)Google Scholar
  10. 10.
    Heymann, P., Koutrika, G., Garcia-Molina, G.: Can social bookmarking improve web search? In: WSDM 2008 (February 2008)Google Scholar
  11. 11.
    Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter. In: HT 2010, p. 173 (2010)Google Scholar
  12. 12.
    Hurlock, J., Wilson, M.L.: Searching twitter: Separating the tweet from the chaff. In: ICWSM (2011)Google Scholar
  13. 13.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: WebKDD/SNA-KDD 2007, pp. 56–65 (2007)Google Scholar
  14. 14.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  15. 15.
    McFedries, P.: Technically speaking: All a-twitter. IEEE Spectrum 44, 84 (2007)CrossRefGoogle Scholar
  16. 16.
    Morris, M.R., Panovich, K., Teevan, J.: What do people ask their social networks, and why? In: CHI 2010, pp. 1739–1748 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Morgan Harvey
    • 1
  • Mark Carman
    • 2
  • David Elsweiler
    • 3
  1. 1.Dept. Computer Science 8 (AI)Univerisity of Erlangen-NurembergGermany
  2. 2.Faculty of ITMonash UniversityMelbourneAustralia
  3. 3.Institute for Information and Media, Language and CultureUniversity of RegensburgGermany

Personalised recommendations