Advertisement

Phrase Pair Classification for Identifying Subtopics

  • Sujatha Das
  • Prasenjit Mitra
  • C. Lee Giles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)

Abstract

Automatic identification of subtopics for a given topic is desirable because it eliminates the need for manual construction of domain-specific topic hierarchies. In this paper, we design features based on corpus statistics to design a classifier for identifying the (subtopic, topic) links between phrase pairs. We combine these features along with the commonly-used syntactic patterns to classify phrase pairs from datasets in Computer Science and WordNet. In addition, we show a novel application of our is-a-subtopic-of classifier for query expansion in Expert Search and compare it with pseudo-relevance feedback.

Keywords

hypernym classification expert search query expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and exploration in the tag space. In: WWW (2006)Google Scholar
  2. 2.
    Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on dblp bibliography data. In: ICDM (2008)Google Scholar
  3. 3.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-scale information extraction in knowitall: (preliminary results). In: WWW (2004)Google Scholar
  4. 4.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: COLING (1992)Google Scholar
  5. 5.
    Lavrenko, V., Croft, W.B.: Relevance based language models. In: SIGIR (2001)Google Scholar
  6. 6.
    Lawrie, D., Croft, W.B.: Discovering and comparing topic hierarchies. In: RIAO (2000)Google Scholar
  7. 7.
    Lin, H., Davis, J., Zhou, Y.: An Integrated Approach to Extracting Ontological Structures from Folksonomies. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 654–668. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Macdonald, C., Ounis, I.: Expertise drift and query expansion in expert search. In: CIKM (2007)Google Scholar
  9. 9.
    Macdonald, C., Ounis, I.: Using Relevance Feedback in Expert Search. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 431–443. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: SIGIR (1999)Google Scholar
  11. 11.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: NIPS (2005)Google Scholar
  12. 12.
    Zavitsanos, E., Paliouras, G., Vouros, G.A., Petridis, S.: Discovering subsumption hierarchies of ontology concepts from text corpora. Web Intelligence (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sujatha Das
    • 1
  • Prasenjit Mitra
    • 2
  • C. Lee Giles
    • 2
  1. 1.Department of Computer Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.School of Information Science and TechnologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations