Abstract
What can text sentiment analysis technology be used for, and does a more usage-informed view on sentiment analysis pose new requirements on technology development?
Keywords
- Sentiment Analysis
- Lexical Item
- Human Emotion
- Computational Linguistics
- Lexical Resource
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In: Annual Conference of the Association of Computational Linguistics, ACL (2007)
Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market. Journal of Computational Science 2, 1–8 (2010)
Bollen, J., Pepe, A., Mao, H.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proceedings of the WWW Conference (2010)
Brody, D.C., Hughston, L.P., Macrina, A.: Credit risk, market sentiment and randomly-timed default. In: Crisan, D. (ed.) Stochastic Analysis. Springer, Heidelberg (2010)
Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: MindTrek 2008. ACM, New York (2008)
Darwin, C.: The Expression of the Emotions in Man and Animals. John Murray, London (1872)
Dunker, P., Nowak, S., Begau, A., Lanz, C.: Content-based mood classification for photos and music: a generic multi-modal classification framework and evaluation approach. In: MIR 2008: Proceeding of the 1st ACM International Conference on Multimedia Information Retrieval. ACM, New York (2008)
Ekman, P.: An argument for basic emotions. In: Cognition and Emotion, pp. 169–200 (1992)
James, W.: What is an emotion? Mind, 188–205 (1884)
Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: Tweets as electronic word of mouth. JASIST 60, 2169–2188 (2009)
Karlgren, J. (ed.): New Text. Proceedings from the Workshop on New Text: Wikis and Blogs and Other Dynamic Text Sources, held in Conjunction with EACL. ACM, Trento (2006)
Karlgren, J.: The relation between author mood and affect to sentiment in text and text genre. In: ESAIR 2011, Fourth Workshop on Exploiting Semantic Annotation in Information Retrieval, Glasgow, Scotland (October 2011)
Kuppens, P., van Mechelen, I., Smits, D.J.M., de Boeck, P.: Associations between emotions: Correspondence across different types of data and componential basis. European Journal of Personality 18, 159–176 (2004)
Mehrabian, A., Russell, J.A.: An approach to environmental psychology. M.I.T. Press, Cambridge (1974)
Mikels, J., Fredrickson, B., Larkin, G., Lindberg, C., Maglio, S.: Emotional category data on images from the International Affective Picture System. Behavior Research Methods, 626–630 (2005)
Morgan, R.L., Heise, D.: Structure of Emotions. Social Psychology Quarterly 51(1), 19–31 (1988)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundation and Trends in Information Retrieval 2(1-2), 1–135 (2008)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP 2002 (2002)
Sahlgren, M., Karlgren, J.: Terminology mining in social media. In: The 18th ACM Conference on Information and Knowledge Management (CIKM 2009), Hong Kong (November 2009)
Schumaker, R.P., Chen, H.: Evaluating a news-aware quantitative trader: The effects of momentum and contrarian stock selection strategies. Journal of the American Society for Information Science and Technology 59(2), 247–255 (2008)
Schumaker, R.P., Chen, H.: A discrete stock price prediction engine based on financial news. Computer 43(1), 51–56 (2010)
Schwarz, N.: Feelings as Information: Implications for Affective Influences on Information Processing. In: Martin, L., Clore, G. (eds.) Theories of Mood and Cognition. Lawrence Erlbaum, Mahwah (2001)
Seki, Y., Evans, D.K., Ku, L.W., Sun, L., Chen, H.H., Kando, N.: Overview of multilingual opinion analysis task at NTCIR-7. In: Proceedings of the 7th NTCIR Meeting. NII, Tokyo (2008)
Shih, C.C., Peng, T.C.: Building topic/trend detection system based on slow intelligence. In: DMS 2010 (2010)
Shmatov, K., Smirnov, M.: On some processes and distributions in a collective model of investors’ behavior. In: SSRN (2005), http://ssrn.com/abstract=739504
Stone, P.J., Dunphy, D.C., Smith, M.S.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Oxford (1966)
Täckström, O., McDonald, R.: Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 368–374. Springer, Heidelberg (2011)
Täckström, O., McDonald, R.: Semi-Supervised Fine-Grained Sentiment Analysis with Latent Variable Structured Conditional Models. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland (2011)
Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Language Resources and Evaluation 39, 165–210 (2005)
Zhang, X., Fuehres, H., Gloor, P.A.: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Social and Behavioral Sciences (2010)
Zhou, W.X., Sornette, D.: Renormalization group analysis of the 2000-2002 anti-bubble in the US S & P 500 index: Explanation of the hierarchy of 5 crashes and prediction. Physica A: Statistical Mechanics and its Applications 330, 584–604 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karlgren, J., Sahlgren, M., Olsson, F., Espinoza, F., Hamfors, O. (2012). Usefulness of Sentiment Analysis. In: Baeza-Yates, R., et al. Advances in Information Retrieval. ECIR 2012. Lecture Notes in Computer Science, vol 7224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28997-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-28997-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28996-5
Online ISBN: 978-3-642-28997-2
eBook Packages: Computer ScienceComputer Science (R0)