Skip to main content

Usefulness of Sentiment Analysis

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7224)

Abstract

What can text sentiment analysis technology be used for, and does a more usage-informed view on sentiment analysis pose new requirements on technology development?

Keywords

  • Sentiment Analysis
  • Lexical Item
  • Human Emotion
  • Computational Linguistics
  • Lexical Resource

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In: Annual Conference of the Association of Computational Linguistics, ACL (2007)

    Google Scholar 

  2. Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market. Journal of Computational Science 2, 1–8 (2010)

    CrossRef  Google Scholar 

  3. Bollen, J., Pepe, A., Mao, H.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proceedings of the WWW Conference (2010)

    Google Scholar 

  4. Brody, D.C., Hughston, L.P., Macrina, A.: Credit risk, market sentiment and randomly-timed default. In: Crisan, D. (ed.) Stochastic Analysis. Springer, Heidelberg (2010)

    Google Scholar 

  5. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: MindTrek 2008. ACM, New York (2008)

    Google Scholar 

  6. Darwin, C.: The Expression of the Emotions in Man and Animals. John Murray, London (1872)

    CrossRef  Google Scholar 

  7. Dunker, P., Nowak, S., Begau, A., Lanz, C.: Content-based mood classification for photos and music: a generic multi-modal classification framework and evaluation approach. In: MIR 2008: Proceeding of the 1st ACM International Conference on Multimedia Information Retrieval. ACM, New York (2008)

    Google Scholar 

  8. Ekman, P.: An argument for basic emotions. In: Cognition and Emotion, pp. 169–200 (1992)

    Google Scholar 

  9. James, W.: What is an emotion? Mind, 188–205 (1884)

    Google Scholar 

  10. Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: Tweets as electronic word of mouth. JASIST 60, 2169–2188 (2009)

    CrossRef  Google Scholar 

  11. Karlgren, J. (ed.): New Text. Proceedings from the Workshop on New Text: Wikis and Blogs and Other Dynamic Text Sources, held in Conjunction with EACL. ACM, Trento (2006)

    Google Scholar 

  12. Karlgren, J.: The relation between author mood and affect to sentiment in text and text genre. In: ESAIR 2011, Fourth Workshop on Exploiting Semantic Annotation in Information Retrieval, Glasgow, Scotland (October 2011)

    Google Scholar 

  13. Kuppens, P., van Mechelen, I., Smits, D.J.M., de Boeck, P.: Associations between emotions: Correspondence across different types of data and componential basis. European Journal of Personality 18, 159–176 (2004)

    CrossRef  Google Scholar 

  14. Mehrabian, A., Russell, J.A.: An approach to environmental psychology. M.I.T. Press, Cambridge (1974)

    Google Scholar 

  15. Mikels, J., Fredrickson, B., Larkin, G., Lindberg, C., Maglio, S.: Emotional category data on images from the International Affective Picture System. Behavior Research Methods, 626–630 (2005)

    Google Scholar 

  16. Morgan, R.L., Heise, D.: Structure of Emotions. Social Psychology Quarterly 51(1), 19–31 (1988)

    CrossRef  Google Scholar 

  17. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundation and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    CrossRef  Google Scholar 

  18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP 2002 (2002)

    Google Scholar 

  19. Sahlgren, M., Karlgren, J.: Terminology mining in social media. In: The 18th ACM Conference on Information and Knowledge Management (CIKM 2009), Hong Kong (November 2009)

    Google Scholar 

  20. Schumaker, R.P., Chen, H.: Evaluating a news-aware quantitative trader: The effects of momentum and contrarian stock selection strategies. Journal of the American Society for Information Science and Technology 59(2), 247–255 (2008)

    CrossRef  Google Scholar 

  21. Schumaker, R.P., Chen, H.: A discrete stock price prediction engine based on financial news. Computer 43(1), 51–56 (2010)

    CrossRef  Google Scholar 

  22. Schwarz, N.: Feelings as Information: Implications for Affective Influences on Information Processing. In: Martin, L., Clore, G. (eds.) Theories of Mood and Cognition. Lawrence Erlbaum, Mahwah (2001)

    Google Scholar 

  23. Seki, Y., Evans, D.K., Ku, L.W., Sun, L., Chen, H.H., Kando, N.: Overview of multilingual opinion analysis task at NTCIR-7. In: Proceedings of the 7th NTCIR Meeting. NII, Tokyo (2008)

    Google Scholar 

  24. Shih, C.C., Peng, T.C.: Building topic/trend detection system based on slow intelligence. In: DMS 2010 (2010)

    Google Scholar 

  25. Shmatov, K., Smirnov, M.: On some processes and distributions in a collective model of investors’ behavior. In: SSRN (2005), http://ssrn.com/abstract=739504

  26. Stone, P.J., Dunphy, D.C., Smith, M.S.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Oxford (1966)

    Google Scholar 

  27. Täckström, O., McDonald, R.: Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 368–374. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  28. Täckström, O., McDonald, R.: Semi-Supervised Fine-Grained Sentiment Analysis with Latent Variable Structured Conditional Models. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland (2011)

    Google Scholar 

  29. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Language Resources and Evaluation 39, 165–210 (2005)

    CrossRef  Google Scholar 

  30. Zhang, X., Fuehres, H., Gloor, P.A.: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Social and Behavioral Sciences (2010)

    Google Scholar 

  31. Zhou, W.X., Sornette, D.: Renormalization group analysis of the 2000-2002 anti-bubble in the US S & P 500 index: Explanation of the hierarchy of 5 crashes and prediction. Physica A: Statistical Mechanics and its Applications 330, 584–604 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karlgren, J., Sahlgren, M., Olsson, F., Espinoza, F., Hamfors, O. (2012). Usefulness of Sentiment Analysis. In: Baeza-Yates, R., et al. Advances in Information Retrieval. ECIR 2012. Lecture Notes in Computer Science, vol 7224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28997-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28997-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28996-5

  • Online ISBN: 978-3-642-28997-2

  • eBook Packages: Computer ScienceComputer Science (R0)