Exploring Query Patterns in Email Search

  • Morgan Harvey
  • David Elsweiler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)


Despite Email being the most popular communication medium currently in use and that people have been shown to regularly re-use messages, very little is known about how people actually search within email clients. In this paper we present a detailed analysis of email search behaviour obtained from a study of 47 users. We uncover a number of behavioral patterns that contrast with those previously observed in web search. From our findings, we describe ways in which email search could be improved and conclude with a short discussion of possible future work.


Query Pattern Levenshtein Distance Lexical Similarity Email Client Search Engine Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (last accessed on September 13, 2011)
  2. 2.
  3. 3.
    Adar, E., Teevan, J., Dumais, S.T.: Large scale analysis of web revisitation patterns. In: Proc SIGCHI, CHI 2008, pp. 1197–1206. ACM (2008)Google Scholar
  4. 4.
    Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff i’ve seen: a system for personal information retrieval and re-use. In: Proc. ACM SIGIR 2003, pp. 72–79 (2003)Google Scholar
  5. 5.
    Elsweiler, D., Baillie, M., Ruthven, I.: What Makes Re-finding Information Difficult? A Study of Email Re-finding. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 568–579. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Elsweiler, D., Harvey, M., Hacker, M.: Understanding re-finding behavior in naturalistic email interaction logs. In: Proc. ACM SIGIR, pp. 35–44. ACM (2011)Google Scholar
  7. 7.
    Elsweiler, D., Losada, D.E., Toucedo, J., Fernandez, R.: Seeding simulated queries with user-study data forpersonal search evaluation. In: Proc. ACM SIGIR, pp. 25–34. ACM (2011)Google Scholar
  8. 8.
    Elsweiler, D., Ruthven, I.: Towards task-based personal information management evaluations. In: Proc. ACM SIGIR 2007, pp. 23–30 (2007)Google Scholar
  9. 9.
    Freeman, E., Gelernter, D.: Lifestreams: a storage model for personal data. SIGMOD Record 25(1), 80–86 (1996)CrossRefGoogle Scholar
  10. 10.
    Jansen, B.J., Spink, A.: How are we searching the world wide web? a comparison of nine search engine transaction logs. IPM 42, 248–263 (2006)Google Scholar
  11. 11.
  12. 12.
    Radicati, S.: Email statistics report (2010)Google Scholar
  13. 13.
    Sanderson, M., Dumais, S.T.: Examining Repetition in User Search Behavior. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 597–604. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Silverstein, C., Henzinger, M., Marais, H., Moricz, M.: Analysis of a very large alta vista query log. Technical report, SRC, Technical Note 1998-014 (1998)Google Scholar
  15. 15.
    Teevan, J., Adar, E., Jones, R., Potts, M.: Information re-retrieval: Repeat queries in yahoo’s logs. In: Proc. SIGIR 2007 (2007)Google Scholar
  16. 16.
    Tyler, S.K., Teevan, J.: Large scale query log analysis of re-finding. In: Proc. WSDM 2010 (2010)Google Scholar
  17. 17.
    Whittaker, S., Sidner, C.: Email overload: exploring personal information management of email. In: SIGCHI 1996, pp. 276–283 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Morgan Harvey
    • 1
  • David Elsweiler
    • 2
  1. 1.Dept. Computer Science 8 (AI)Univeristy of Erlangen-NurembergGermany
  2. 2.Institute for Information and Media, Language and CultureUniversity of RegensburgGermany

Personalised recommendations