New Metrics for Meaningful Evaluation of Informally Structured Speech Retrieval

  • Maria Eskevich
  • Walid Magdy
  • Gareth J. F. Jones
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)


Search effectiveness for tasks where the retrieval units are clearly defined documents is generally evaluated using standard measures such as mean average precision (MAP). However, many practical speech search tasks focus on content within large spoken files lacking defined structure. These data must be segmented into smaller units for search which may only partially overlap with relevant material. We introduce two new metrics for the evaluation of search effectiveness for informally structured speech data: mean average segment precision (MASP) which measures retrieval performance in terms of both content segmentation and ranking with respect to relevance; and mean average segment distance-weighted precision (MASDWP) which takes into account the distance between the start of the relevant segment and the retrieved segment. We demonstrate the effectiveness of these new metrics on a retrieval test collection based on the AMI meeting corpus.


Speech retrieval informally structured speech evaluation metrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press (2010)Google Scholar
  2. 2.
    Carletta, J.: Unleashing the killer corpus: experiences in creating the multi-everything AMI Meeting Corpus. Language Resources and Evaluation Journal 41(2), 181–190 (2007)CrossRefGoogle Scholar
  3. 3.
    Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proc. of the 1st NAACL Conference, Seattle, Washington, USA, pp. 26–33 (2000)Google Scholar
  4. 4.
    Garofolo, J.S., Auzanne, C.G.P., Voorhees, E.M.: The TREC Spoken Document Retrieval Track: A Success Story. In: Proc. of RIAO 2000, Paris, France, pp. 1–20 (2000)Google Scholar
  5. 5.
    Hearst, M.A.: TextTiling: Segmenting Text into Multi-paragraph Subtopic Passages. Computational Linguistics 23(1), 33–64 (1997)Google Scholar
  6. 6.
    Hiemstra, D.: Using Language Models for Information Retrieval. Ph.D. thesis, Center of Telematics and Information Technology, AE Enschede, The Netherlands (2000)Google Scholar
  7. 7.
    Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 Evaluation Measures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 24–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kekalainen, J., Jarvelin, K.: Using graded relevance assessments in ir evaluation. Journal of the American Society for Information Science and Technology 53(13), 1120–1129 (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, B., Oard, D.W.: One-sided measures for evaluating ranked retrieval effectiveness with spontaneous conversational speech. In: Proc. of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA (2006)Google Scholar
  10. 10.
    Pecina, P., Hoffmannová, P., Jones, G.J.F., Zhang, Y., Oard, D.W.: Overview of the CLEF-2007 Cross-Language Speech Retrieval Track. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 674–686. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  12. 12.
    Renals, S., Hain, T., Boulard, H.: Recognition and interpretation of meetings: The AMI and AMIDA projects. In: Proc. of the IEEE Workshop ASRU (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Eskevich
    • 1
  • Walid Magdy
    • 2
  • Gareth J. F. Jones
    • 1
    • 2
  1. 1.Centre for Digital Video Processing, School of ComputingDublin City UniversityDublinIreland
  2. 2.Centre for Next Generation Localisation, School of ComputingDublin City UniversityDublinIreland

Personalised recommendations