Synthesis of Macromolecules by Chain Growth Polymerization

  • Dietrich Braun
  • Harald Cherdron
  • Matthias Rehahn
  • Helmut Ritter
  • Brigitte Voit


Polymerization reactions can proceed by various mechanisms, as mentioned earlier, and can be catalyzed by initiators of different kinds. For chain growth (addition) polymerization of single compounds, initiation of chains may occur via radical, cationic, anionic, or so-called coordinative-acting initiators, but some monomers will not polymerize by more than one mechanism. Both thermodynamic and kinetic factors can be important, depending on the structure of the monomer and its electronic and steric situation. The initial step generates active centers that generally cause the reaction to propagate very rapidly via macroradicals or macroions; chain termination yields inactive macromolecules. It is important to note that in classical uncontrolled chain growth mechanism the molar mass of the formed polymers increases fast in the first reaction period but reaches a plateau value even at relatively low monomer conversion which leads to the fact that monomer as well as terminated final polymer chains are present in the reaction system. The most important initiators are summarized in Table 3.1.


Block Copolymer Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Radical Polymerization Graft Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen G, Bevington J (eds) (1989) Comprehensive polymer science, vols 3 and 4. Pergamon, OxfordGoogle Scholar
  2. Amajjahe S, Choi S, Munteanu M, Ritter H (2008) Angew Chem Int Edit 41:716Google Scholar
  3. Benaglia M, Rizzardo E, Alberti A, Guerra M (2005) Macromolecules 38:3129–3140 (RAFT, see Example 3.15b)CrossRefGoogle Scholar
  4. Brunelle DJ (ed) (1996) Ring opening polymerization: mechanisms, catalysis, structure, utility. Hanser, MunichGoogle Scholar
  5. Buchmeiser MR (2000) Chem Rev 100:1565 (ROMP)CrossRefGoogle Scholar
  6. Buchmeiser MR (2005) Adv Polym Sci 176:89 (ROMP)Google Scholar
  7. Cherdron H, Brekner M-J, Osan F (1994) Cycloolefin copolymers. Angew Makromol Chem 223:121CrossRefGoogle Scholar
  8. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Macromolecules 31:5559CrossRefGoogle Scholar
  9. Corpart P, Charmont D, Biadatti T, Zard S, Michelet D (1998) WO 0.858.974 to Rhodia Chimie, Invs (MADIX)Google Scholar
  10. Cowie JMG (ed) (1985) Alternating copolymers. Plenum, New York/LondonGoogle Scholar
  11. Fink G, Mülhaupt R, Brintzinger HH (1995) Ziegler catalysts. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  12. Fouassier JP (1995) Photoinitiation and photocuring – fundamentals and applications. Hanser, MunichGoogle Scholar
  13. Grubbs RH (2003) In: Grubbs RH (ed) Handbook of metathesis, vol 1–3, 1st edn. Wiley VCH, WeinheimCrossRefGoogle Scholar
  14. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerization. Chem Rev 101:3661–3688CrossRefGoogle Scholar
  15. Houben-Weyl (1987) Methoden der organischen Chemie. Makromolekulare Stoffe, vol E20. Thieme, Stuttgart/New YorkGoogle Scholar
  16. Ivin KJ, Saegusa T (eds) (1984) Ring opening polymerization, vol 3. Elsevier, London/New YorkGoogle Scholar
  17. Jeromin J, Noll O, Ritter H (1998) Macromol Chem Phys 199:2641 (Cyclodextrin in Polymerization)Google Scholar
  18. Kaminsky W, Arndt M (1997) Metallocenes for polymer catalysis. Adv Polym Sci 127:143CrossRefGoogle Scholar
  19. Komber H, Erber M, Däbritz F, Ritte H, Stadermann J, Voit B (2011) Macromolecules 44(9):3250CrossRefGoogle Scholar
  20. Kronganz VV, Trifunac AD (eds) (1995) Processes in photoreactive polymers. Chapman and Hall, New YorkGoogle Scholar
  21. Matsumura S, Kobayashi S, Ritter H, Kaplan D (2006) Adv Polym Sci 194:95; Kobayashi S (2009), Macrol Rapid Commun 30:237Google Scholar
  22. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  23. Moad G, Solomon DH (1995) The chemistry of free radical polymerization. Pergamon-Elsevier, OxfordGoogle Scholar
  24. Quinn JF, Barner L, Barner-Kowollik C, Rizzardo E, Davis TP (2002) Macromolecules 35:7620 (RAFT)CrossRefGoogle Scholar
  25. Ritter H, Tabatabai M (2002) Advanced macromolecular and supramolecular materials and processes. Kluwer Academic/Plenum publishers (Cyclodextrin in polymerization), New York, pp 41–53Google Scholar
  26. Ruhl T, Spahn P, Hellmann GP (2003) Polymer 44:7625 (Artifical opals prepared by melt compression; see Example 3.43)CrossRefGoogle Scholar
  27. Scheirs J, Kaminsky W (1999) Metallocene-based polyolefins, vol 2. Wiley-VCH, WeinheimGoogle Scholar
  28. Schrock RR (2009) Chem Rev 109:3211–3226 (ROMP)CrossRefGoogle Scholar
  29. Swarc M (1996) Ionic polymerization fundamentals. Hanser, MunichGoogle Scholar
  30. Szejtli J (1998) Cyclodextrin technology. Kluwer, DordrechtGoogle Scholar
  31. Togni A, Haltermann RL (1998) Metallocenes, vol 2. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  32. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18 (ROMP)CrossRefGoogle Scholar
  33. Wenz G (1994) Angew Chem 106:851 (Cyclodextrin in polymerization)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dietrich Braun
    • 1
  • Harald Cherdron
    • 2
  • Matthias Rehahn
    • 3
  • Helmut Ritter
    • 4
  • Brigitte Voit
    • 5
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.WiesbadenGermany
  3. 3.Ernst-Berl-Institut für Technische und Makromolekulare Chemie FG der PolymerenTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  5. 5.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany

Personalised recommendations