Colloid Flow Control in Microchannels and Detection by Laser Scattering

  • Stefano Pagliara
  • Catalin Chimerel
  • Dirk G. A. L. Aarts
  • Richard Langford
  • Ulrich F. Keyser
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)

Abstract

We introduce a new approach towards the flow control and detection of colloids in microfluidic specimens. We fabricate hybrid polydimethylsiloxane (PDMS)/glass microfluidic chips equipped with parallel micrometer and sub-micrometer channels with different width and thickness. We image and detect the colloid flow direction through the microchannels by coupling laser-light-scattering in a restricted region of a single channel. We control single polymer colloids by means of a computerized pressure-based flow control system and study the Poiseuille flow through channels with different square cross section. We demonstrate the possibility of in situ sensing populations of colloids with different dimensions down to the sub-100 nm scale.

Keywords

Wire Array Soft Lithography Laser Scattering Particle Reynolds Number Outlet Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang H, Chon CH, Pan X, Li D (2009) Microfluid Nanofluid 7:739CrossRefGoogle Scholar
  2. 2.
    Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A (2010) Anal Chem 82:4848CrossRefGoogle Scholar
  3. 3.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974CrossRefGoogle Scholar
  4. 4.
    Wolfe DB, Ashcom JB, Hwang JC, Schaffer CB, Mazur E, Whitesides GM (2003) Adv Mater 15:62CrossRefGoogle Scholar
  5. 5.
    Jung S-Y, Retterer ST, Collier CP (2010) Lab Chip 10:2688CrossRefGoogle Scholar
  6. 6.
    Wu H, Odom TW, Chiu DT, Whitesides GM (2003) J Am Chem Soc 125:554CrossRefGoogle Scholar
  7. 7.
    Chung J, Hsu W (2007) J Vac Sci Technol B 25:1671CrossRefGoogle Scholar
  8. 8.
    Mizukami Y, Rajniak D, Rajniak A, Nishimura M (2002) Sens Actuat B-Chem 81:202CrossRefGoogle Scholar
  9. 9.
    McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Anal Chem 74:1537CrossRefGoogle Scholar
  10. 10.
    Tu D, Pagliara S, Camposeo A, Potente G, Mele E, Cingolani R, Pisignano D (2011) Adv Funct Mater 21:1140CrossRefGoogle Scholar
  11. 11.
    Maleki T, Mohammadi S, Ziaie B (2009) Nanotechnology 20:105302CrossRefGoogle Scholar
  12. 12.
    Campbell LC, Wilkinson MJ, Manz A, Camilleri P, Humphreys CJ (2004) Lab Chip 4:225CrossRefGoogle Scholar
  13. 13.
    Imre A, Ocola LE, Rich L, Klingfus J (2010) J Vac Sci Technol B 28:304CrossRefGoogle Scholar
  14. 14.
    Wanzenboeck HD, Fischer M, Mueller S, Bertagnolli E (2004) Proc IEEE Sens 1–3:227CrossRefGoogle Scholar
  15. 15.
    Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF (2010) Nano Lett 10:2493CrossRefGoogle Scholar
  16. 16.
    Segerink LI, Sprenkels AdJ, ter Braak PM, Vermes I, van den Berg A (2010) Lab Chip 10:1018CrossRefGoogle Scholar
  17. 17.
    Andreyev D, Arriaga EA (2007) Anal Chem 79:5474CrossRefGoogle Scholar
  18. 18.
    Otto O, Czerwinski F, Gornall JL, Stober G, Oddershede LB, Seidel R, Keyser UF (2010) Opt Express 18:22722CrossRefGoogle Scholar
  19. 19.
    Gadd JC, Kuyper CL, Fujimoto BS, Allen RW, Chiu DT (2008) Anal Chem 80:3450CrossRefGoogle Scholar
  20. 20.
    Kummrow A, Theisen J, Frankowski M, Tuchscheerer A, Yildirim H, Brattke K, Schmidt M, Neukammer J (2009) Lab Chip 9:972CrossRefGoogle Scholar
  21. 21.
    Pamme N, Koyama R, Manz A (2003) Lab Chip 3:187CrossRefGoogle Scholar
  22. 22.
    Steen HB (2004) Cytometry A 57A:94CrossRefGoogle Scholar
  23. 23.
    Rezenom YH, Wellman AD, Tilstra L, Medley CD, Gilman SD (2007) Analyst 132:1215CrossRefGoogle Scholar
  24. 24.
    O’Callaghan KJ, Paine AJ, Rudin A (2007) J Appl Polym Sci 1995:58Google Scholar
  25. 25.
    Kumacheva E, Kalinina O, Lilge L (1999) Adv Mater 11:231CrossRefGoogle Scholar
  26. 26.
    Pagliara S, Chimerel C, Aarts DGAL, Langford R, Keyser UF (2011) Lab Chip 11:3365Google Scholar
  27. 27.
    Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  28. 28.
    Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Proc Nat Acad Sci USA 104:18892CrossRefGoogle Scholar
  29. 29.
    Kim YW, Yoo JY (2008) J Micromech Microeng 18:065015CrossRefGoogle Scholar
  30. 30.
    Snijkers F, D’Avino G, Maffettone PL, Greco F, Hulsen M, Vermant J (2009) J Rheol 53:459CrossRefGoogle Scholar
  31. 31.
    Girardo S, Cingolani R, Pisignano D (2007) Anal Chem 79:5856CrossRefGoogle Scholar
  32. 32.
    Lee YS, Wagner NJ (2003) Rheol Acta 42:199Google Scholar
  33. 33.
    Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Langmuir 18:5314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Pagliara
    • 1
  • Catalin Chimerel
    • 1
  • Dirk G. A. L. Aarts
    • 2
  • Richard Langford
    • 1
  • Ulrich F. Keyser
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations