Competitive Solvation and Chemisorption in Silver Colloidal Suspensions

  • Marco Pagliai
  • Francesco Muniz-Miranda
  • Vincenzo Schettino
  • Maurizio Muniz-Miranda
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)

Abstract

Raman spectra and ab initio computational analysis involving Car–Parrinello molecular dynamics simulations and Density Functional Theory approach have been employed to obtain information on the behaviour of oxazole and thiazole in aqueous suspensions of silver nanoparticles, where solvation and chemisorption processes competitively occur. The solvation of both oxazole and thiazole is dependent on stable hydrogen bonds with water, mainly involving the nitrogen atoms of the heterocycles. The adsorption on silver colloidal nanoparticles is, instead, ensured by replacing water molecules of the aqueous environment with surface active sites that can be modelled as Ag 3 + clusters. These surface complexes can reproduce accurately the observed surface-enhanced Raman spectra, particularly concerning the most significant frequency-shifts with respect to the normal Raman spectra in aqueous solutions and the relative intensity changes.

Keywords

Colloidal Suspension SERS Spectrum Silver Colloidal Surface Plasmon Resonance Band Relative Intensity Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlücker S (2010) Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications. Wiley-VCH, ChichesterCrossRefGoogle Scholar
  2. 2.
    Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJC, Nie S, Shin DM (2011) Cancer Res 71:1526CrossRefGoogle Scholar
  3. 3.
    Zhang L, Fang M (2010) Nano Today 5:128CrossRefGoogle Scholar
  4. 4.
    Huang D, Bai X, Zheng L (2011) J Phys Chem C 115:14641CrossRefGoogle Scholar
  5. 5.
    Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, OxfordGoogle Scholar
  6. 6.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Muniz-Miranda M, Pergolese B, Bigotto A, Giusti A (2007) J Coll Interf Sci 314:540CrossRefGoogle Scholar
  8. 8.
    Pergolese B, Muniz-Miranda M, Bigotto A (2005) J Phys Chem B 109:9665CrossRefGoogle Scholar
  9. 9.
    Ojha AK (2007) Chem Phys Lett 340:69Google Scholar
  10. 10.
    Chandra S, Chowdhury J, Ghosh M, Talapatra GB (2011) J Phys Chem C 115:14309CrossRefGoogle Scholar
  11. 11.
    Szeghalmi AV, Leopold L, Pinzaru S, Chis V, Silaghi-Dumitrescu I, Schmitt M, Popp J, Kiefer W (2005) J Mol Struct 735–736:103CrossRefGoogle Scholar
  12. 12.
    Giese B, McNaughton D (2002) J Phys Chem B 106:1461CrossRefGoogle Scholar
  13. 13.
    Doerksen RJ, Thakkar AJ (2002) Int J Quantum Chem 90:534CrossRefGoogle Scholar
  14. 14.
    Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 2 75:790CrossRefGoogle Scholar
  15. 15.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471CrossRefGoogle Scholar
  16. 16.
    CPMD, Copyright MPI für Festkörperforschung Stuttgart 1997–2001, Copyright IBM Corp 1990–2008Google Scholar
  17. 17.
    Pagliai M, Muniz-Miranda M, Cardini G, Schettino V (2009) J Phys Chem A 113:15198CrossRefGoogle Scholar
  18. 18.
    Muniz-Miranda M, Pagliai M, Muniz-Miranda F, Schettino V (2011) Chem Commun 47:3138CrossRefGoogle Scholar
  19. 19.
    Frisch MJ et al (2004) Gaussian 03 revision C.02. Gaussian, WallingfordGoogle Scholar
  20. 20.
    Keresztury G, Holly S, Varga J, Besenyei G, Wang AY, Durig JR (1993) Spectrochim Acta A 49:2007CrossRefGoogle Scholar
  21. 21.
    Keresztury G (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chichester, p 71Google Scholar
  22. 22.
    Krishnakumar V, Keresztury G, Sundius T, Ramasamy R (2004) J Mol Struct 702:9CrossRefGoogle Scholar
  23. 23.
    Yamamoto T, Namekawa K, Yamaguchi I, Koizumi T-A (2007) Polymer 48:2331CrossRefGoogle Scholar
  24. 24.
    Poyatos M, Maisse-Francois A, Bellemin-Laponnaz S, Gade LH (2006) Organometallics 25:2641CrossRefGoogle Scholar
  25. 25.
    Shatursky OYa, Volkova TM, Romanenko OV, Himmelreich NH, Grishn EV (2007) Biochim Biophys Acta 1768:207CrossRefGoogle Scholar
  26. 26.
    Bird CW (1992) Tetrahedron 48:335CrossRefGoogle Scholar
  27. 27.
    Mrozek A, Karolak-Wojciechowska J, Amiel P, Barbe J (2000) J Mol Struct 524:151CrossRefGoogle Scholar
  28. 28.
    Cyrañski MK, Krygowski TM, Katritzky AR, von Ragué Schleyer P (2002) J Org Chem 67:1333CrossRefGoogle Scholar
  29. 29.
    Kurita Y, Takayama C (1997) J Phys Chem A 101:5593CrossRefGoogle Scholar
  30. 30.
    Pagliai M, Bellucci L, Muniz-Miranda M, Cardini G, Schettino V (2006) Phys Chem Chem Phys 8:171CrossRefGoogle Scholar
  31. 31.
    McDonald NA, Jorgensen WL (1998) J Phys Chem B 102:8049CrossRefGoogle Scholar
  32. 32.
    Kaur D, Khanna S (2011) Comput Theor Chem 963:71CrossRefGoogle Scholar
  33. 33.
    Xiong Y, Washio I, Chen J, Sadilek M, Xia Y (2007) Angew Chem Int Ed 119:5005CrossRefGoogle Scholar
  34. 34.
    Otto A (2005) J Raman Spectrosc 36:497CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Pagliai
    • 1
  • Francesco Muniz-Miranda
    • 2
  • Vincenzo Schettino
    • 1
    • 2
  • Maurizio Muniz-Miranda
    • 1
  1. 1.Dipartimento di Chimica “Ugo Schiff”Università di FirenzeSesto FiorentinoItaly
  2. 2.European Laboratory for Non-Linear Spectroscopy LENSSesto FiorentinoItaly

Personalised recommendations