Control over the Shell Thickness of Core/Shell Drops in Three-Phase Glass Capillary Devices

  • Goran T. Vladisavljević
  • Ho Cheung Shum
  • David A. Weitz
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)

Abstract

Monodisperse core/shell drops with aqueous core and poly(dimethylsiloxane) (PDMS) shell of controllable thickness have been produced using a glass microcapillary device that combines co-flow and flow-focusing geometries. The throughput of the droplet generation was high, with droplet generation frequency in the range from 1,000 to 10,000 Hz. The size of the droplets can be tuned by changing the flow rate of the continuous phase. The technique enables control over the shell thickness through adjusting the flow rate ratio of the middle to inner phase. As the flow rate of the middle and inner phase increases, the droplet breakup occurs in the dripping-to-jetting transition regime, with each double emulsion droplet containing two monodisperse internal aqueous droplets. The resultant drops can be used subsequently as templates for monodisperse polymer capsules with a single or multiple inner compartments, as well as functional vesicles such as liposomes, polymersomes and colloidosomes.

Keywords

Shell Thickness Droplet Breakup Multiple Emulsion Injection Tube Injection Capillary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom (grant reference number: EP/HO29923/1).

References

  1. 1.
    Sawalha H, Schroën K, Boom R (2009) AIChE J 55:2827CrossRefGoogle Scholar
  2. 2.
    Kim JW, Utada AS, Fernández-Nieves A, Hu Z, Weitz DA (2007) Angew Chem Int Ed 46:1819CrossRefGoogle Scholar
  3. 3.
    Fernández-Nieves A, Vitelli V, Utada AS, Link DR, Márquez M, Nelson DR, Weitz DA (2007) Phys Rev Lett 99:157801CrossRefGoogle Scholar
  4. 4.
    Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Langmuir 24:7651CrossRefGoogle Scholar
  5. 5.
    Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Langmuir 21:9183CrossRefGoogle Scholar
  6. 6.
    Lee D, Weitz DA (2008) Adv Mater 20:3498CrossRefGoogle Scholar
  7. 7.
    Walde P, Ichikawa S (2001) Biomol Eng 18:143CrossRefGoogle Scholar
  8. 8.
    Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Mater Today 11:18CrossRefGoogle Scholar
  9. 9.
    Atkin R, Davies R, Hardy J, Vincent B (2004) Macromolecules 37:7979CrossRefGoogle Scholar
  10. 10.
    Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) J Colloid Interface Sci 278:198CrossRefGoogle Scholar
  11. 11.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Angew Chem Int Ed 37:2201CrossRefGoogle Scholar
  12. 12.
    Han JH, Koo BM, Kim JW, Suh KD (2008) Chem Commun 28:984CrossRefGoogle Scholar
  13. 13.
    Abate AR, Weitz DA (2009) Small 5:2030CrossRefGoogle Scholar
  14. 14.
    Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Science 38:537CrossRefGoogle Scholar
  15. 15.
    Sun BJ, Shum HC, Holtze C, Weitz DA (2010) ACS Appl Mater Interfaces 2:3411CrossRefGoogle Scholar
  16. 16.
    Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Phys Rev Lett 99:4CrossRefGoogle Scholar
  17. 17.
    Lee D, Weitz DA (2009) Small 5:1935Google Scholar
  18. 18.
    Gasparini G, Kosvintsev SR, Stillwell MT, Holdich RG (2008) Colloid Surf B 61:199CrossRefGoogle Scholar
  19. 19.
    Kim SH, Kim JW, Cho JC, Weitz DA (2011) Lab Chip 11:3162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Goran T. Vladisavljević
    • 1
    • 2
  • Ho Cheung Shum
    • 3
  • David A. Weitz
    • 4
  1. 1.Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
  2. 2.Vinča Institute of Nuclear SciencesBelgradeSerbia
  3. 3.Department of Mechanical EngineeringUniversity of Hong KongHong KongChina
  4. 4.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations