Advertisement

Evaporation of Pinned Sessile Microdroplets of Water: Computer Simulations

  • S. Semenov
  • V. M. Starov
  • R. G. Rubio
  • M. G. Velarde
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)

Abstract

The aim of present work is to describe results of computer simulations, which show the influence of kinetic effects on evaporation of pinned sessile submicron droplets of water. The suggested model takes into account both diffusive and kinetic regimes of evaporation. The obtained results show a smooth transition between kinetic and diffusive regimes of evaporation as the droplet size decreases from millimetre to micrometer size.

Keywords

Contact Angle Droplet Size Contact Line Vapour Concentration Marangoni Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sodtke C, Stephan P (2007) Spray cooling on micro structured surfaces. Int J Heat Mass Tran 50:4089–4097CrossRefGoogle Scholar
  2. 2.
    Cheng W-L, Han F-Y, Liu Q-N, Zhao R, Fan H-L (2011) Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling. Energy 36:249–257CrossRefGoogle Scholar
  3. 3.
    Du P, Li L, Zhao W, Leng X, Hu X (2011) Study on the printing performance of coated paper inkjet ink. Adv Mater Res 174:358–361CrossRefGoogle Scholar
  4. 4.
    Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7(8):1123–1127CrossRefGoogle Scholar
  5. 5.
    Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60CrossRefGoogle Scholar
  6. 6.
    Haschke T, Wiechert W, Graf K, Bonaccurso E, Li G, Suttmeier FT (2007) Evaporation of solvent microdrops on polymer substrates: from well controlled experiments to mathematical models and back. Nanoscale Microscale Therm Eng 11:31–41CrossRefGoogle Scholar
  7. 7.
    Pericet-Camara R, Bonaccurso E, Graf K (2008) Microstructuring of polystyrene surfaces with nonsolvent sessile droplets. Chemphyschem 9:1738–1746CrossRefGoogle Scholar
  8. 8.
    Karlsson S, Rasmuson A, Björn IN, Schantz S (2011) Characterization and mathematical modelling of single fluidised particle coating. Powder Technol 207:245–256CrossRefGoogle Scholar
  9. 9.
    Kim JH, Shi W-X, Larson RG (2007) Methods of stretching DNA molecules using flow fields. Langmuir 23:755–764CrossRefGoogle Scholar
  10. 10.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765CrossRefGoogle Scholar
  11. 11.
    Guena G, Poulard C, Voue M, Coninck JD, Cazabat AM (2006) Evaporation of sessile liquid droplets. Colloid Surf A 291:191–196CrossRefGoogle Scholar
  12. 12.
    Girard F, Antoni M, Sefiane K (2008) On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24:9207–9210CrossRefGoogle Scholar
  13. 13.
    Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094CrossRefGoogle Scholar
  14. 14.
    Sefiane K, Wilson SK, David S, Dunn GJ, Duffy BR (2009) On the effect of the atmosphere on the evaporation of sessile droplets of water. Phys Fluids 21:062101CrossRefGoogle Scholar
  15. 15.
    Ristenpart WD, Kim PG, Domingues C, Wan J, Stone HA (2007) Influence of substrate conductivity on circulation reversal in evaporating drops. Phys Rev Lett 99:234502CrossRefGoogle Scholar
  16. 16.
    Bhardwaj R, Fang X, Attinger D (2009) Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New J Phys 11:075020CrossRefGoogle Scholar
  17. 17.
    David S, Sefiane K, Tadrist L (2007) Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloid Surf A 298:108–114CrossRefGoogle Scholar
  18. 18.
    Semenov S, Starov VM, Rubio RG, Agogo H, Velarde MG (2011) Evaporation of sessile water droplets: universal behaviour in presence of contact angle hysteresis. Colloid Surf A. doi: 10.1016/j.colsurfa.2011.07.013, in press
  19. 19.
    Moosman S, Homsy GM (1980) Evaporating menisci of wetting fluids. J Colloid Interface Sci 73:212–223CrossRefGoogle Scholar
  20. 20.
    Starov V, Velarde M, Radke C (2007) Dynamics of wetting and spreading. In: Surfactant sciences series, vol 138. Taylor & Francis Boca RatonGoogle Scholar
  21. 21.
    Ajaev VS, Gambaryan-Roisman T, Stephan P (2010) Static and dynamic contact angles of evaporating liquids on heated surfaces. J Colloid Interface Sci 342:550–558CrossRefGoogle Scholar
  22. 22.
    Kryukov AP, Levashov VYu, Sazhin SS (2004) Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. Int J Heat Mass Tran 47:2541–2549CrossRefGoogle Scholar
  23. 23.
    Sazhin SS, Shishkova IN, Kryukov AP, Levashov VYu, Heikal MR (2007) Evaporation of droplets into a background gas: kinetic modelling. Int J Heat Mass Tran 50:2675–2691CrossRefGoogle Scholar
  24. 24.
    Semenov S, Starov VM, Rubio RG, Velarde MG (2010) Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations. Colloid Surf A 372:127–134CrossRefGoogle Scholar
  25. 25.
    Bligh PH, Haywood R (1986) Latent heat – its meaning and measurement. Eur J Phys 7:245–251CrossRefGoogle Scholar
  26. 26.
    Galvin KP (2005) A conceptually simple derivation of the Kelvin equation. Chem Eng Sci 60:4659–4660CrossRefGoogle Scholar
  27. 27.
    Picknett RG, Bexon R (1977) The evaporation of sessile or pendant drops in still air. J Colloid Interface Sci 61:336–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Semenov
    • 1
  • V. M. Starov
    • 1
  • R. G. Rubio
    • 2
  • M. G. Velarde
    • 3
  1. 1.Department of Chemical EngineeringLoughborough UniversityLoughboroughUK
  2. 2.Department of Química Física IUniversidad ComplutenseMadridSpain
  3. 3.Instituto PluridisciplinarUniversidad ComplutenseMadridSpain

Personalised recommendations