Advertisement

Influence of Anions of the Hofmeister Series on the Size of ZnS Nanoparticles Synthesised via Reverse Microemulsion Systems

  • Marina Rukhadze
  • Matthias Wotocek
  • Sylvia Kuhn
  • Rolf Hempelmann
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)

Abstract

Zinc sulfide nanocrystals with sizes of 4–7 nm were obtained by insufflation of hydrogen sulfide through reverse microemulsions, based on aqueous solutions of different zinc salts, nonionic surfactants and cyclohexane. The influence of the Hofmeister anions acetate, chloride, bromide, nitrate, iodide, and perchlorate on the micelles and thereof formed nanoparticles was studied by means of dynamic light scattering (DLS), X-ray diffractometry (XRD), UV-Vis spectroscopy and transmission electron microscopy (TEM). The sizes of micelles are significantly influenced by the kosmotropic or chaotropic nature of the actual anion, present in the water pools of reverse micelles: the diameter of the spherical ZnS nanoparticles, synthezised in these micelles, correlates with their size and thus follows the direction of the Hofmeister series. Several possible mechanisms are proposed to explain the influence of the anions.

Keywords

Dynamic Light Scattering Reverse Micelle Zinc Salt Reverse Microemulsions Hydroiodic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efros AL, Efros AL (1982) Sov Phys Semicond USSR 16:772–775Google Scholar
  2. 2.
    Brus LE (1984) J Chem Phys 80:4403–4409CrossRefGoogle Scholar
  3. 3.
    Henglein A (1989) Chem Rev 89:1861–1873CrossRefGoogle Scholar
  4. 4.
    Horst W (1993) Angew Chem Int Edit Engl 32:41–53CrossRefGoogle Scholar
  5. 5.
    Popović IG, Katsikas L, Weller H (1994) Polymer Bull 32:597–603CrossRefGoogle Scholar
  6. 6.
    Alivisatos AP (1996) Science 271:933–937CrossRefGoogle Scholar
  7. 7.
    Manzoor K, Vadera SR, Kumar N, Kutty TRN (2004) Appl Phys Lett 84:284–286CrossRefGoogle Scholar
  8. 8.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  9. 9.
    Rufino MNY, Galván MCÁ, Del Valle F, Villoria A, José M, José LGF (2009) ChemSusChem 2:471–485CrossRefGoogle Scholar
  10. 10.
    Chen L, Shang Y, Xu J, Liu H, Hu Y (2006) J Dispers Sci Technol 27:839–842CrossRefGoogle Scholar
  11. 11.
    Herrig H, Hempelmann R (1997) Nanostruct Mater 9:241–244CrossRefGoogle Scholar
  12. 12.
    Xu C, Ni Y, Zhang Z, Ge X, Ye Q (2003) Mater Lett 57:3070–3076CrossRefGoogle Scholar
  13. 13.
    Sottmann T, Strey R (2005) In: Lyklema J (ed) Fundamentals in interface and colloid science, vol 5. Elsevier, Amsterdam, ch. 5Google Scholar
  14. 14.
    Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247–260CrossRefGoogle Scholar
  15. 15.
    Von Hippel PH, Wong KY (1964) Science 145:577–580CrossRefGoogle Scholar
  16. 16.
    Long FA, McDevit WF (1952) Chem Rev 51:119–169CrossRefGoogle Scholar
  17. 17.
    Weissenborn PK, Pugh RJ (1995) Langmuir 11:1422–1426CrossRefGoogle Scholar
  18. 18.
    Baldwin RL (1996) Biophys J 71:2056–2063CrossRefGoogle Scholar
  19. 19.
    Collins KD, Neilson GW, Enderby JE (2007) Biophys Chem 128:95–104CrossRefGoogle Scholar
  20. 20.
    Levinger NE (2002) Science 298:1722–1723CrossRefGoogle Scholar
  21. 21.
    Tsigankov VS, Sementin SA, Kucherenko AO, Okhotnikova LK (2002) Biofizika 47:863–865Google Scholar
  22. 22.
    Boström M, Deniz V, Franks GV, Ninham BW (2006) Advances in colloid and interface science 123–126:5–15Google Scholar
  23. 23.
    Hofmeister effects special issue (2004) Curr Opin Colloid Interf Sci 9:1–197Google Scholar
  24. 24.
    Beck Ch, Härtl W, Hempelmann R (1998) J Mater Res 13:3174–3180CrossRefGoogle Scholar
  25. 25.
    Provencher SW (1982) Comput Phys Commun 27:213–227CrossRefGoogle Scholar
  26. 26.
    Krill CE, Birringer R (1998) Philos Mag A 77:621–640CrossRefGoogle Scholar
  27. 27.
    Scherrer P (1918) Göttinger Nachrichten 2:96–100Google Scholar
  28. 28.
    Gong S, Yao D, Jiang H, Xiao H (2008) Phys Lett A 372:3325–3332CrossRefGoogle Scholar
  29. 29.
    Sachs JN, Woolf TB (2003) J Am Chem Soc 125:8742– 8743CrossRefGoogle Scholar
  30. 30.
    Chang GG, Hung TM, Hung HC (2000) Proc Natl Sci Counc Repub China B 24:89–100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marina Rukhadze
    • 1
  • Matthias Wotocek
    • 2
  • Sylvia Kuhn
    • 2
  • Rolf Hempelmann
    • 2
  1. 1.Exact and Natural SciencesI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Physical ChemistrySaarland UniversitySaarbrückenGermany

Personalised recommendations