Advertisement

Direct Numerical Simulations of Indoor Ventilation

  • Olga Shishkina
  • Claus Wagner
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)

Abstract

DNS of turbulent mixed convection in a complicated 3D-domain are performed with a fast fourth order finite-volume method using a separation of variables method together with the capacitance matrix technique. The method generally allows to use hexahedral computational meshes, which are non-equidistant in all directions and non-regular in any two directions. We investigate instantaneous and statistical characteristics of turbulentmixed convection in parallelepiped convection cells with heated parallelepiped obstacles inside for Rayleigh number Open image in new window =3 ×108, Prandtl number Open image in new window = 0.714 and Reynolds number based on the velocity of the inlet flow Open image in new window = 2.37 ×104 in comparison with results of purely forced convection for the same Reynolds number.

Keywords

Reynolds Number Natural Convection Prandtl Number Rayleigh Number Direct Numerical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Costa, J.J., Oliveira, L.A., Blay, D.: Int. J. Heat & Mass Transfer 42, 4391–4409 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ehrhard, P.: J. Fluid Mech. 439, 165–198 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Fitzgerald, S.D., Wood, A.W.: J. Fluid Mech. 591, 21–42 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kenjeres, S., Gunarjo, S.B., Hanjalic, K.: Int. J. Heat Fluid Flow 26, 569–586 (2005)CrossRefGoogle Scholar
  5. 5.
    Linden, P.F.: Annu. Rev. Fluid Mech. 31, 201–238 (1999)CrossRefGoogle Scholar
  6. 6.
    Shishkina, O., Shishkin, A., Wagner, C.: J. Comput. & Appl. Maths 226, 336–344 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: New J. Phys. 12, 075022 (2010)CrossRefGoogle Scholar
  8. 8.
    Shishkina, O., Thess, A.: J. Fluid Mech. 633, 449–460 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Shishkina, O., Wagner, C.: J. Fluid Mech. 599, 383–404 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Shishkina, O., Wagner, C.: Phys. Fluids 19, 085107 (2007)CrossRefGoogle Scholar
  11. 11.
    Shishkina, O., Wagner, C.: C. R. Mecanique 333, 17–28 (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR - Institute for Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations