Lidar Turbulence Measurements for Wind Energy

  • Jakob Mann
  • Ameya Sathe
  • Julia Gottschall
  • Mike Courtney
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)


Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging and the full extent of conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube and sonic anemometers at a flat terrain test site, under different atmospheric stability conditions. It is observed that the systematic errors are up to 90% for the vertical velocity variance, whereas they are up to 70% for the horizontal velocity variances. The systematic errors also vary with atmospheric stability, being lowest for the very unstable conditions. It is concluded that with the current measurement configuration, these lidars cannot be used to measure turbulence precisely.


Wind Turbine Wind Energy Sonic Anemometer Turbulence Measurement Atmospheric Stability Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, D.A., Harris, M., Coffey, A.S., Mikkelsen, T., Jørgensen, H.E., Mann, J., Danielian, R.: Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy 9, 87–93 (2006)CrossRefGoogle Scholar
  2. 2.
    Kindler, D., Oldroyd, A., Macaskill, A., Finch, D.: An eight month test campaign of the QinetiQ ZephIR system: Preliminary results. Meteorologische Zeitschrift 16(5), 479–489 (2007)CrossRefGoogle Scholar
  3. 3.
    Courtney, M., Wagner, R., Lindelow, P.: Testing and comparison of lidars for profile and turbulence measurements in wind energy. In: 14th International Symposium for the Advancement of Boudary Layer Remote Sensing (2008)Google Scholar
  4. 4.
    Peña, A., Hasager, C.B., Gryning, S.-E., Courtney, M., Antoniou, I., Mikkelsen, T.: Offshore wind profiling using light detection and ranging measurements. Wind Energy 12(2), 105–124 (2009)CrossRefGoogle Scholar
  5. 5.
    Engelbart, D.A.M., Kallistratova, M., Kouznetsov, R.: Determination of the turbulent fluxes of heat and momentum in the ABL by ground-based remote-sensing techniques (a review). Meteorologische Zeitschrift 16(4), 325–335 (2007)CrossRefGoogle Scholar
  6. 6.
    Emeis, S., Harris, M., Banta, R.M.: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteorologische Zeitschrift 16(4), 337–347 (2007)CrossRefGoogle Scholar
  7. 7.
    Sjöholm, M., Mikkelsen, T., Mann, J., Enevoldsen, K., Courtney, M.: Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorologische Zeitschrift 18(3) (Sp. Iss. SI) , 281–287 (2009)CrossRefGoogle Scholar
  8. 8.
    Mann, J., Cariou, J., Courtney, M., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelow, P., Sjöholm, M., Enevoldsen, K.: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteorologische Zeitschrift 18(2) (Sp. Iss. SI), 135–140 (2009)CrossRefGoogle Scholar
  9. 9.
    Mann, J., Peña, A., Bingöl, F., Wagner, R., Courtney, M.S.: Lidar scanning of momentum flux in and above the surface layer. Journal of Atmospheric and Oceanic Technology 27(6), 792–806 (2010), doi:10.1175/2010JTECHA1389.1CrossRefGoogle Scholar
  10. 10.
    Sathe, A.R., Mann, J., Gottschall, J., Courtney, M.: Estimation of the systematic errors in lidar turbulence measurements. To be published in JTECH (2011)Google Scholar
  11. 11.
    Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence. Journal of Fluid Mechanics 273, 141–168 (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sonnenschein, C.M., Horrigan, F.A.: Signal-to-noise relationships for coaxial systems that heterodyne backscatter from atmosphere. Applied Optics 10(7), 1600 (1971)CrossRefGoogle Scholar
  13. 13.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 2. MIT Press (1975)Google Scholar
  14. 14.
    Peña, A., Gryning, S.-E., Mann, J.: On the length scale of the wind profile. Quarterly Journal of the Royal Meteorological Society (2010) (accepted)Google Scholar
  15. 15.
    Eberhard, W.L., Cupp, R.E., Healy, K.R.: Doppler lidar measurements of profiles of turbulence and momentum flux. Journal of Atmospheric and Oceanic Technology 6, 809–819 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jakob Mann
    • 1
  • Ameya Sathe
    • 2
  • Julia Gottschall
    • 1
  • Mike Courtney
    • 1
  1. 1.Wind Energy DivisionRisØ DTURoskildeDenmark
  2. 2.L & R, Section Wind EnergyTU DelftHS DelftThe Netherlands

Personalised recommendations