A Uniformly Valid Theory of Turbulent Separation

  • Bernhard ScheichlEmail author
  • Alfred Kluwick
  • Frank T. Smith
  • Jon Paton
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)


The contribution deals with recent theoretical results concerning separation of a turbulent boundary layer from a blunt solid object in a uniform stream, accompanied by a numerical study. The investigation is restricted to incompressible nominally steady two-dimensional flow past an impervious obstacle surface. Then the global Reynolds number represents the only parameter entering the description of the Reynolds-averaged flow. It shall be large enough to ensure that laminar–turbulent transition takes place in a correspondingly small region encompassing the stagnation point. Consequently, the concomitant asymptotic hierarchy starts with the external Helmholtz–Kirchhoff potential flow, which detaches at an initially unknown point Open image in new window from the body, driving the turbulent boundary layer. It is found that the separation mechanism is inherently reminiscent of the transition process. The local analysis of separation not only fixes the actual scaling of the entire boundary layer but is also expected to eventually predict the position of Open image in new window in a rational way.


Turbulent Boundary Layer Stagnation Point Adverse Pressure Gradient Detach Eddy Simulation Rear Stagnation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melnik, R.E.: Comput. Fluids 17(1)Google Scholar
  2. 2.
    Neish, A., Smith, F.T.: J. Fluid Mech. 241Google Scholar
  3. 3.
    Roshko, A.: J. Fluid Mech. 10(3)Google Scholar
  4. 4.
    Scheichl, B.: Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. In: Steinrück, H. (ed.) CISM Courses and Lectures, vol. 523, pp. 221–246. Springer, New York (2010)Google Scholar
  5. 5.
    Scheichl, B., Kluwick, A.: J. Fluids Struct. 24(8)Google Scholar
  6. 6.
    Scheichl, B., Kluwick, A., Alletto, M.: Acta Mech. 201(1-4)Google Scholar
  7. 7.
    Scheichl, B., Kluwick, A., Smith, F.T.: J. Fluid Mech. 670 (2011)Google Scholar
  8. 8.
    Schlichting, H., Gersten, K.: Boundary-layer Theory, 8th edn. Springer, New York (2003)Google Scholar
  9. 9.
    Smith, F.T.: Proc. R. Soc. Lond. A 356 (1687)Google Scholar
  10. 10.
    Sychev, V.V.: Fluid Dyn. 7(3)Google Scholar
  11. 11.
    Sychev, V.V.: Fluid Dyn. 22(3)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bernhard Scheichl
    • 1
    • 2
    Email author
  • Alfred Kluwick
    • 2
  • Frank T. Smith
    • 3
  • Jon Paton
    • 4
  1. 1.AC2T Research GmbHWiener NeustadtAustria
  2. 2.Institute of Fluid Mechanics and Heat TransferVienna University of TechnologyViennaAustria
  3. 3.Department of MathematicsUniversity College LondonLondonUK
  4. 4.TotalSim LtdBrackleyUK

Personalised recommendations