Advertisement

Characterisation of Synthetic Turbulence Methods for Large-Eddy Simulation of Supersonic Boundary Layers

  • Guillaume Aubard
  • Xavier Gloerfelt
  • J. -C. Robinet
Part of the Springer Proceedings in Physics book series (SPPHY, volume 141)

Abstract

For the simulation of a supersonic turbulent boundary layer, two methods of generating synthetic turbulent inflow data are compared, namely the Random Fourier Modes (RFM), and the Synthetic Eddy Method (SEM). The first one relies on theoretical properties of turbulence, whereas the second one is essentially based on empirical informations. The adaptation distance needed to recover a realistic wall turbulence is smaller than 10 initial boundary layer thicknesses for the SEM inflow, and roughly twice longer for the RFM inflow. A correct prescription of the phase information is seen to be a key element to efficiently generate a sustained wall turbulence.

Keywords

Turbulent Kinetic Energy Direct Numerical Simulation Supersonic Boundary Layer Adaptation Distance Inverse Energy Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béchara, W., Bailly, C., Lafon, P., Candel, S.: Stochastic approach to noise modeling for free turbulent flows. AIAA Journal 32(3), 455–463 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Gloerfelt, X., Le Garrec, T.: Generation of inflow turbulence for aeroacoustic applications. In: 14th AIAA/CEAS Aero Acoustics Conference, Vancouver, Canada, AIAA Paper 2008-2926, May 5-7 (2008)Google Scholar
  3. 3.
    Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulation. International Journal of Heat and Fluid Flow 27, 585–593 (2006)CrossRefGoogle Scholar
  4. 4.
    Keating, A., Piomelli, U., Balaras, E., Kaltenbach, H.: A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16(12), 4696 (2004)CrossRefGoogle Scholar
  5. 5.
    Kraichnan, R.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)zbMATHCrossRefGoogle Scholar
  6. 6.
    Pamies, M., Weiss, P., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21(4), 045,103–045,118 (2009)CrossRefGoogle Scholar
  7. 7.
    Pirozzoli, S., Grasso, F., Gatski, T.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16(3), 530–545 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillaume Aubard
    • 1
  • Xavier Gloerfelt
    • 1
  • J. -C. Robinet
    • 1
  1. 1.DynFluid LaboratoryArts et Métiers ParisTechParisFrance

Personalised recommendations