Skip to main content

Protein-Protein Interactions as Drug Targets

  • Chapter
  • First Online:
Protein-Protein Interactions

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 8))

Abstract

Over the last two decades, a number of protein-protein interactions (PPIs) have been targeted by the pharmaceutical industry. Pharma as a whole has historically considered PPIs to be undruggable or at the very least high-risk targets, and the relative lack of success in modulating PPIs with small molecules has done little to change this prevailing view. However, many compounds are now in clinical trials, and the experiences of the last 20 years have at the very least led to improved understanding of how to approach these challenging targets. This chapter discusses some of the issues that PPIs present as targets for small molecule modulation, with emphasis on the structural characteristics of PPIs in general, and also of classes of PPIs that share specific attributes. Grouping PPIs by structural class produces a clearer picture of both the characteristics of optimized small molecules, and the relative merits and drawbacks of various PPIs as drug targets. Within this framework, much of the past work in the PPI area is summarized through capsule descriptions of efforts directed against individual targets. Some contributors to individual successes and failures, and some insights gained from the many avenues of research followed within the PPI field are put forward. Themes of the importance of understanding the structural basis of mechanism of action and of structural support for drug discovery emerge, and guidelines for future study are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    CAS  Google Scholar 

  2. Russ AP, Lampel S (2006) The druggable genome: an update. Drug Disc Today 10:1607–1610

    Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2008) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Google Scholar 

  4. Grant A, Lee D, Orengo C (2004) Progress towards mapping the universe of protein folds. Genome Biol 5:107

    Google Scholar 

  5. Kunin V, Cases I, Enrigh E, de Lorenzo V, Ouzounis CA (2003) Myriads of protein families, and still counting. Genome Biol 4:401

    Google Scholar 

  6. Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8:559–566

    CAS  Google Scholar 

  7. Stumpf M, Thorne T, de Silva ERS et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105:6959–6964

    CAS  Google Scholar 

  8. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    CAS  Google Scholar 

  9. Strong M, Eisenberg D (2007) The protein network as a tool for finding novel drug targets. Prog Drug Res 64:191–215

    CAS  Google Scholar 

  10. Komurov K, White M (2007) Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Mol Syst Biol 3:110

    Google Scholar 

  11. Aggarwal S (2009) What’s fueling the biotech engine – 2008. Nat Rev Immunol 11:987–993

    Google Scholar 

  12. Toogood PL (2002) Inhibition of protein-protein association by small-molecules: approaches and progress. J Med Chem 45:1543–1558

    CAS  Google Scholar 

  13. Chene P (2006) Drugs targeting protein-protein interactions. ChemMedChem 1:400–411

    CAS  Google Scholar 

  14. Whitty A, Kumaravel G (2006) Between a rock and a hard place? Nat Chem Biol 2:112–118

    CAS  Google Scholar 

  15. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    CAS  Google Scholar 

  16. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    CAS  Google Scholar 

  17. Fischer PM (2005) Protein-protein interactions in drug discovery. Drug Des Rev Online 2:179–207

    CAS  Google Scholar 

  18. Berg T (2008) Small-molecule inhibitors of protein-protein interactions. Curr Opin Drug Discov Dev 11:666–674

    CAS  Google Scholar 

  19. Fry DC (2008) Drug-like inhibitors of protein-protein interactions: a structural examination of effective protein mimicry. Curr Protein Pept Sci 9:240–247

    CAS  Google Scholar 

  20. Stites WE (1997) Protein-protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97:1233–1250

    CAS  Google Scholar 

  21. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–14

    CAS  Google Scholar 

  22. Young L, Jernigan RL, Covell DG (1994) A role for surface hydrophobicity in protein-protein recognition. Protein Sci 3:717–729

    CAS  Google Scholar 

  23. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–219824

    CAS  Google Scholar 

  24. Archakov AI, Govorun VM, Dubanov AV et al (2003) Protein-protein interactions as a target for drugs in proteomics. Proteomics 3:380–391

    CAS  Google Scholar 

  25. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244

    CAS  Google Scholar 

  26. Tsai CJ, Lin SL, Wolfson HJ, Nissinov R (1997) Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6:53–64

    CAS  Google Scholar 

  27. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci USA 93:13–20

    CAS  Google Scholar 

  28. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272:121–132

    CAS  Google Scholar 

  29. Argos P (1988) An investigation of protein subunit and domain interfaces. Protein Eng 2:101–113

    CAS  Google Scholar 

  30. Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    CAS  Google Scholar 

  31. Bordner AJ, Abagyan R (2005) Statistical analysis and prediction of protein-protein interfaces. Proteins 60:353–366

    CAS  Google Scholar 

  32. Kufareva I, Budagyan L, Raush E et al (2007) PIER: protein interface recognition for structural proteomics. Proteins 67:400–417

    CAS  Google Scholar 

  33. Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins 39:331–342

    CAS  Google Scholar 

  34. Fauchere JL, Pliska VE (1983) Hydrophobic parameters of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amide. Eur J Med Chem 18:369–375

    CAS  Google Scholar 

  35. Radzicka A, Wolfenden R (1988) Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27:1664–1670

    CAS  Google Scholar 

  36. Takano K, Yutani K (2001) A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant proteins. Protein Eng 14:525–528

    CAS  Google Scholar 

  37. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    CAS  Google Scholar 

  38. Wells JA (1991) Systematic mutational analyses of protein-protein interfaces. Methods Enzymol 202:390–411

    CAS  Google Scholar 

  39. Atwell S, Ultsch M, de Vos AM, Wells JA (1997) Structural plasticity in a remodeled protein-protein interface. Science 278:1125–1128

    CAS  Google Scholar 

  40. Jonsson Z, Podust V, Podust L, Hubscher U (1995) Tyrosine 114 is essential for the trimeric structure and the functional activities of human proliferating cell nuclear antigen. EMBO J 14:5745–5751

    CAS  Google Scholar 

  41. Sattler M, Liang H, Nettesheim D et al (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    CAS  Google Scholar 

  42. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    CAS  Google Scholar 

  43. Kozakov D, Hall DR, Chuang G et al (2011) Structural conservation of druggable hot spots in protein–protein interfaces. Proc Natl Acad Sci USA 108:13528–13535

    CAS  Google Scholar 

  44. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12:14–20

    CAS  Google Scholar 

  45. Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Protein-protein interactions: structurally conserved residues distinguish between protein binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100:5772–5777

    CAS  Google Scholar 

  46. Sundberg EJ, Mariuzza RA (2000) Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions. Structure 8:R137–R142

    CAS  Google Scholar 

  47. Morrison KL, Weiss GA (2001) Combinatorial alanine scanning. Curr Opin Chem Biol 5:302–307

    CAS  Google Scholar 

  48. Sidhu SS, Fairbrother WJ, Deshayes K (2003) Exploring protein-protein interactions with phage display: discovery of peptidic antagonists of IGF-1 function. Chembiochem 4:14–25

    CAS  Google Scholar 

  49. Deshayes K (2005) Exploring protein-protein interactions using peptide libraries displayed on phage. In: Sidhu SS (ed) Phage display in biotechnology and drug discovery. CRC Press, Boca Raton

    Google Scholar 

  50. Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10:1675–1682

    CAS  Google Scholar 

  51. Burgoyne MJ, Jackson RM (2006) Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces. Bioinformatics 22:1335–1342

    CAS  Google Scholar 

  52. Sugaya N, Furuya T (2011) Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions. BMC Bioinformatics 12:50

    CAS  Google Scholar 

  53. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutriex BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15:656–667

    CAS  Google Scholar 

  54. Fuller JC, Burgoyne MJ, Jackson RM (2009) Predicting druggable binding sites at the protein-protein interface. Drug Discov Today 14:155–161

    CAS  Google Scholar 

  55. Hopkins A, Groom C, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Google Scholar 

  56. Abad-Zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 10:464–469

    Google Scholar 

  57. Higuerelo AP, Schreyer A, Bickerton GRJ et al (2009) Atomic interactions and profile of small-molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des 74:457–467

    Google Scholar 

  58. Lipinski C, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  59. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88:807–814

    CAS  Google Scholar 

  60. Johnson TW, Dress KR, Edwards M (2009) Using the Golden Triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 19:5560–5564

    CAS  Google Scholar 

  61. Morelli X, Bourgeas R, Roche P (2011) Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 15:475–481

    CAS  Google Scholar 

  62. Reynès C, Host H, Camproux A et al (2010) Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 6:e1000695

    Google Scholar 

  63. Neugebauer A, Hartmann RW, Klein CD (2007) Prediction of protein-protein interaction inhibitors by chemoinformatics and machine learning methods. J Med Chem 50:4665–4668

    CAS  Google Scholar 

  64. Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Model 41:1308–1315

    CAS  Google Scholar 

  65. Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8:86–96

    CAS  Google Scholar 

  66. Teague SJ, Davis AM, Leeson PD, Oprea TI (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed Engl 38:3743–3748

    CAS  Google Scholar 

  67. Veber DF, Johnson SR, Cheng H-Y et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    CAS  Google Scholar 

  68. Bergström CAS, Strafford M, Lazarova L et al (2003) Absorption classification of oral drugs based on molecular surface properties. J Med Chem 46:558–570

    Google Scholar 

  69. Hou TJ, Wang JM, Zhang W et al (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    CAS  Google Scholar 

  70. Hou T, Wang J, Zhang W, Xu X (2007) ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J Chem Inf Model 47:460–463

    CAS  Google Scholar 

  71. Alex A, Millan DS, Perez M et al (2011) Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm 2:669–674

    CAS  Google Scholar 

  72. Paolini GV, van Shepland RHB, Hoorn WP et al (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    CAS  Google Scholar 

  73. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890

    CAS  Google Scholar 

  74. Wenlock MC, Austin RP, Barton P et al (2003) A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    CAS  Google Scholar 

  75. Walters WP, Green J, Weiss JR, Murcko MA (2011) What do medicinal chemists actually make? A 50-year retrospective. J Med Chem 54:6405–6416

    CAS  Google Scholar 

  76. Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47:6338–6348

    CAS  Google Scholar 

  77. Proudfoot JR (2005) The evolution of synthetic oral drug properties. Bioorg Med Chem Lett 15:1087–1090

    CAS  Google Scholar 

  78. Blake JF (2005) Identification and evaluation of molecular properties related to preclinical optimization and clinical fate. Med Chem 1:649–655

    CAS  Google Scholar 

  79. Gill AL, Verdonk M, Boyle RG, Taylor R (2007) A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem 7:1408–1422

    CAS  Google Scholar 

  80. Bergström CAS, Wassvik CM, Johansson K, Hubatsch I (2007) Poorly soluble marketed drugs display solvation limited solubility. J Med Chem 50:5858–5862

    Google Scholar 

  81. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:1000–1017

    Google Scholar 

  82. Vintinoiu A, Leroux JC (2008) Organogels and their use in drug delivery: a review. J Control Release 125:179–192

    Google Scholar 

  83. Gupta S, Moulik SP (2008) Biocompatible microemulsions and their prospective uses in drug delivery. J Pharm Sci 97:22–45

    CAS  Google Scholar 

  84. Cheng Y, Xu Z, Ma M, Xu T (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–143

    CAS  Google Scholar 

  85. Drummond DC, Noble CO, Hayes ME et al (2008) Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 97:4696–4740

    CAS  Google Scholar 

  86. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    CAS  Google Scholar 

  87. DeLano WL, Ultsch MH, deVos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283

    CAS  Google Scholar 

  88. Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein-protein interaction. J Med Chem 50:3457–3464

    CAS  Google Scholar 

  89. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of preexisting populations. Protein Sci 11:184–197

    CAS  Google Scholar 

  90. Teague S (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    CAS  Google Scholar 

  91. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci Signal 219:l2

    Google Scholar 

  92. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    CAS  Google Scholar 

  93. Seidler J, McGovern SL, Dornan TL, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46:4477–4786

    CAS  Google Scholar 

  94. Lebowicz J, Lewis MS, Schuck P (2009) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Google Scholar 

  95. Arkin M, Lear JD (2001) A new data analysis method to determine binding constants of small-molecules to proteins using equilibrium analytical ultracentrifugation with absorption optics. Anal Biochem 299:98–107

    CAS  Google Scholar 

  96. Philo JS (2000) Sedimentation equilibrium analysis of mixed associations using numerical constraints to impose mass or signal conservation. Methods Enzymol 321:100–120

    CAS  Google Scholar 

  97. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    CAS  Google Scholar 

  98. Lewis EA, Murphy KP (2005) Isothermal titration calorimetry. Methods Mol Biol 305:1–15

    CAS  Google Scholar 

  99. Pattnaik P (2000) Surface plasmon resonance. Applications in understanding receptor-ligand interaction. Appl Biochem Biotechol 126:79–92

    Google Scholar 

  100. Cooper M, Mayr LM, Rich RL, Myszka DG (2011) The revolution of real-time, label-free biosensor applications. In: Cooper M, Mayr LM (eds) Label-free technologies for drug discovery. Wiley, New York

    Google Scholar 

  101. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    CAS  Google Scholar 

  102. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    CAS  Google Scholar 

  103. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    CAS  Google Scholar 

  104. Sun C, Petros AM, Hajduk PJ (2011) Fragment-based lead discovery: challenges and opportunities. J Comput Aided Mol Des 25:607–610

    CAS  Google Scholar 

  105. Coyne AG, Scott DE, Abell C (2010) Drugging challenging targets using fragment-based approaches. Curr Opin Chem Biol 14:299–307

    CAS  Google Scholar 

  106. Hämäläinen MD, Zhukov A, Ivarsson M et al (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen 13:202–209

    Google Scholar 

  107. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    CAS  Google Scholar 

  108. Navratilova I, Hopkins AL (2010) Fragment screening by surface plasmon resonance. ACS Med Chem Lett 1:44–48

    CAS  Google Scholar 

  109. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7:1630–1642

    CAS  Google Scholar 

  110. Nienaber VL, Richardson PL, Klighofer V et al (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108

    CAS  Google Scholar 

  111. Davies DR, Begley DW, Hartley RC et al (2011) Predicting the success of fragment screening by X-ray crystallography. Methods Enzymol 493:91–114

    CAS  Google Scholar 

  112. Jhoti H, Cleasby A, Verdonk M, Williams G (2008) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    Google Scholar 

  113. Hajduk PK, Gerfin T, Boehlen JM et al (1999) High-throughput nuclear magnetic resonance-based screening. J Med Chem 42:2315–2317

    CAS  Google Scholar 

  114. Dalvit C, Flocco M, Knapp S et al (2002) High-throughput NMR-based screening with competition binding experiments. J Am Chem Soc 124:7702–7709

    CAS  Google Scholar 

  115. Hajduk PJ, Burns DJ (2002) Integration of NMR and high-throughput screening. Comb Chem High Throughput Screen 6:613–621

    Google Scholar 

  116. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    CAS  Google Scholar 

  117. Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4:490–496

    CAS  Google Scholar 

  118. Köppen H (2009) Virtual screening – what does it give us? Curr Opin Drug Discov Dev 12:397–407

    Google Scholar 

  119. Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Opin Med Chem 7:1006–1014

    CAS  Google Scholar 

  120. Betzi S, Restouin A, Opi S et al (2007) Protein–protein interaction inhibition (2P2I) combining high throughput and virtual screening: application to the HIV-1 Nef protein. Proc Natl Acad Sci USA 104:19256–19261

    CAS  Google Scholar 

  121. Casey FP, Pihan E, Shields DC (2009) Discovery of small-molecule inhibitors of protein-protein interactions using combined ligand and target score normalization. J Med Chem 49:2708–2717

    CAS  Google Scholar 

  122. Sandrini S (2005) Use of IL-2 receptor antagonists to reduce delayed graft function following renal transplantation: a review. Clin Transplant 19:705–710

    Google Scholar 

  123. Brandhuber BJ, Boone T, Kenney WC, McKay DB (1987) Three-dimensional structure of interleukin-2. Science 238:1707–1709

    CAS  Google Scholar 

  124. Sauve K, Nachman M, Spence C et al (1991) Localization in human interleukin 2 of the binding site to the α chain (p55) of the interleukin 2 receptor. Proc Natl Acad Sci USA 88:4636–4640

    CAS  Google Scholar 

  125. Tilley JW, Chen L, Fry DC et al (1997) Identification of a small-molecule inhibitor of the IL-2/IL-2Rα receptor interaction which binds to IL-2. J Am Chem Soc 119:7589–7590

    CAS  Google Scholar 

  126. Erlanson DA, Wells JA, Braisted AC (2004) Tethering: fragment-based drug discovery. Annu Rev Biophys 33:199–223

    CAS  Google Scholar 

  127. Hyde J, Braisted AC, Randal M, Arkin MR (2003) Discovery and characterization of cooperative ligand binding in the adaptive region of interleukin-2. Biochemistry 42:6475–6483

    CAS  Google Scholar 

  128. Raimundo BC, Oslob JD, Braisted AC et al (2004) Integrating fragment assembly and biophysical methods in the chemical advancement of small-molecule antagonists of IL-2: an approach for inhibiting protein-protein interactions. J Med Chem 47:3111–3130

    CAS  Google Scholar 

  129. Thanos CD, DeLano WL, Wells JA (2006) Hot-spot mimicry of a cytokine receptor by a small-molecule. Proc Natl Acad Sci USA 103:15422–15427

    CAS  Google Scholar 

  130. Rickert M, Wang X, Boulanger MJ et al (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477–1480

    CAS  Google Scholar 

  131. Arkin MR, Randal M, DeLano WL et al (2003) Binding of small-molecules to an adaptive protein-protein interface. Proc Natl Acad Sci USA 100:1603–1608

    CAS  Google Scholar 

  132. Siddiqui MA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil). Drugs 66:1263–1271

    Google Scholar 

  133. Monie A, Hung CF, Roden R, Wu TC (2008) Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2:97–105

    Google Scholar 

  134. Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97

    CAS  Google Scholar 

  135. White PW, Faucher AM, Goudreau N (2011) Small-molecule inhibitors of the human papillomavirus E1–E2 interaction. Curr Top Microbiol Immunol 348:61–88

    CAS  Google Scholar 

  136. Yoakim C, Ogilvie WW, Goudreau N et al (2003) Discovery of the first series of inhibitors of human papilloma virus type 11: inhibition of the assembly of the E1-E2 Origin DNA complex. Bioorg Med Chem Lett 13:2539–2541

    CAS  Google Scholar 

  137. White PW, Titolo S, Brault K et al (2003) Inhibition of human papillomavirus DNA replication by small-molecule antagonists of the E1-E1 protein interaction. J Biol Chem 278:26765–26772

    CAS  Google Scholar 

  138. Wang Y, Coulombe R, Cameron DR et al (2004) Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J Biol Chem 279:6976–6985

    CAS  Google Scholar 

  139. Goudreau N, Cameron DR, Deziel R et al (2007) Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1-E2 protein-protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. Bioorg Med Chem 15:2690–2700

    CAS  Google Scholar 

  140. White PW, Faucher AM, Goudreau N (2011) Small-molecule inhibitors of the human papillomavirus E1-E2 interaction. In: Vassilev L, Fry D (eds) Small-molecule inhibitors of protein-protein interactions. Springer, Berlin

    Google Scholar 

  141. Antson AA, Burns JE, Moroz OV et al (2000) Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature 403:805–809

    CAS  Google Scholar 

  142. Harris SF, Botchan MR (1999) Crystal structure of the human papillomavirus type 18 E2 activation domain. Science 284:1673–1677

    CAS  Google Scholar 

  143. Abbate E, Berger JM, Botchan MR (2004) The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 18:1981–1996

    CAS  Google Scholar 

  144. Mosyak L, Zhang Y, Glasfeld E et al (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19:3179–3191

    CAS  Google Scholar 

  145. Tsao DHH, Sutherland AG, Jennings LD et al (2006) Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 14:7953–7961

    CAS  Google Scholar 

  146. Jennings LD, Foreman KW, Rush TS et al (2004) Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction. Bioorg Med Chem 12:5115–5131

    CAS  Google Scholar 

  147. Kenny CH, Ding W, Kelleher K et al (2003) Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 323:224–233

    CAS  Google Scholar 

  148. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489–1495

    CAS  Google Scholar 

  149. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    CAS  Google Scholar 

  150. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    CAS  Google Scholar 

  151. Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246

    CAS  Google Scholar 

  152. Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2-fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529

    CAS  Google Scholar 

  153. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    CAS  Google Scholar 

  154. Grasberger BL, Lu T, Schubert C et al (2005) Discovery and cocrystal structure of benzodiazapinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912

    CAS  Google Scholar 

  155. Allen JG, Bourbeau MP, Wohlhieter GE et al (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 52:7044–7053

    CAS  Google Scholar 

  156. Demma M, Maxwell E, Ramos R et al (2010) SCH529074, a small-molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J Biol Chem 285:10198–10212

    CAS  Google Scholar 

  157. Yin H, Lee GI, Park HS et al (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 44:2704–2707

    CAS  Google Scholar 

  158. Stoll R, Renner C, Hansen S et al (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344

    CAS  Google Scholar 

  159. Lu Y, Nikolovska-Coleska Z, Fang X et al (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 49:3759–3762

    CAS  Google Scholar 

  160. Bowman AL, Nikolovska-Coleska Z, Zhong H et al (2007) Small-molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814

    CAS  Google Scholar 

  161. Rothweiler U, Czarna A, Krajewski M et al (2008) Isoquinolin-1-one inhibitors of the MDM2-p53 interaction. ChemMedChem 3:1118–1128

    CAS  Google Scholar 

  162. Fry DC, Graves B, Vassilev LT (2005) Development of E3-substrate (MDM2-p53)-binding inhibitors: structural aspects. Methods Enzymol 399:622–633

    CAS  Google Scholar 

  163. Ding K, Lu Y, Nikolovska-Coleska Z et al (2006) Structure-based design of spire-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435

    CAS  Google Scholar 

  164. Boettcher A, Buschmann N, Furet P et al (2008) 3-Imidazolylindoles for treatment of proliferative diseases and their preparation. PCT Int Appl WO2008119741

    Google Scholar 

  165. Popowicz GM, Czarna A, Wolf S et al (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–1111

    CAS  Google Scholar 

  166. Popowicz GM, Domling A, Holak TA (2011) The structure-based design of Mdm2-p53 inhibitors gets serious. Angew Chem Int Ed Engl 50:2680–2688

    CAS  Google Scholar 

  167. Uhrinova S, Uhrin D, Powers H et al (2005) Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol 350:587–598

    CAS  Google Scholar 

  168. Tovar C, Rosinski J, Filipovic Z et al (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103:1888–1893

    CAS  Google Scholar 

  169. Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105:3933–3938

    CAS  Google Scholar 

  170. Weber L (2010) Patented inhibitors of p53-Mdm2 interaction (2006–2008). Expert Opin Ther Patents 20:179–191

    CAS  Google Scholar 

  171. Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37

    CAS  Google Scholar 

  172. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  Google Scholar 

  173. Petros AM, Nettesheim DG, Wang Y et al (2000) Rationale for Bcl-x(L)/bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9:2528–2534

    CAS  Google Scholar 

  174. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl family proteins induces regression of solid tumours. Nature 435:677–681

    CAS  Google Scholar 

  175. Lee EF, Czabotar PE, Smith BJ et al (2007) Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14:1711–1713

    CAS  Google Scholar 

  176. Park C-M, Bruncko M, Adickes J et al (2008) Discovery of an orally bioavailable small-molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51:6902–6915

    CAS  Google Scholar 

  177. Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL (2003) Anti-TNF-α therapies: the next generation. Nat Rev Drug Discov 2:736–746

    CAS  Google Scholar 

  178. Eck ME, Sprang SR (1989) The structure of tumor necrosis factor-α at 2.6 Å resolution. J Biol Chem 264:17595–17605

    CAS  Google Scholar 

  179. He MM, Smith AS, Oslb JD et al (2005) Small-molecule inhibition of TNF-α. Science 310:1022–1025

    CAS  Google Scholar 

  180. Debnath AK (2006) Prospects and strategies for the discovery and development of small-molecule inhibitors of six-helix bundle formation in class 1 viral fusion proteins. Curr Opin Investig Drugs 7:118–127

    CAS  Google Scholar 

  181. Debnath A (2006) Progress in identifying peptides and small-molecule inhibitors targeted to gp41 of HIV-1. Expert Opin Investig Drugs 15:465–478

    CAS  Google Scholar 

  182. Koszalka GW, Meanwell NA (2006) Inhibition of virus entry: an antiviral mechanism of emerging prominence. Curr Opin Investig Drugs 7:106–108

    Google Scholar 

  183. Roymans D, De Bondt HL, Arnoult E et al (2010) Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc Natl Acad Sci USA 107:308–313

    CAS  Google Scholar 

  184. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    CAS  Google Scholar 

  185. Shimaoka M, Springer TA (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2:703–716

    CAS  Google Scholar 

  186. Scarborough RM, Gretler DD (2000) Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J Med Chem 43:3453–3473

    CAS  Google Scholar 

  187. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215

    Google Scholar 

  188. Duggan ME, Hutchinson JH (2000) Ligands to the integrin receptor αvβ3. Expert Opin Ther Patents 10:1367–1383

    CAS  Google Scholar 

  189. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    CAS  Google Scholar 

  190. Cox D (2004) Oral GPIIb/IIIa antagonists: what went wrong? Curr Pharm Des 10:1587–1596

    CAS  Google Scholar 

  191. Auzzas L, Zanardi F, Battistini L et al (2010) Targeting αvβ3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 17:1255–1299

    CAS  Google Scholar 

  192. Xiong JP, Stehle T, Diefenbach B et al (2001) Crystal structure of the extracellular segment of integrin αvβ3. Science 294:339–345

    CAS  Google Scholar 

  193. Xiong JP, Stehle T, Zhang R et al (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an arg-gly-asp ligand. Science 296:151–155

    CAS  Google Scholar 

  194. Springer TA, Zhu J, Xiao T (2008) Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. J Cell Biol 182:791–800

    CAS  Google Scholar 

  195. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. New Engl J Med 354:899–910

    CAS  Google Scholar 

  196. Targan SR, Feagan BG, Fedorak RN et al (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE trial. Gastroenterology 132:1672–1683

    CAS  Google Scholar 

  197. Tilley JW (2008) Very late antigen-4 integrin antagonists. Expert Opin Ther Patents 18:841–859

    CAS  Google Scholar 

  198. Muro F, Iimura S, Sugimoto Y et al (2009) Discovery of trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxamide)phenyl]acetyl]-(4 S)-methoxy-(2 S)-pyrrolidinylmethoxy]cyclo-hexanecarboxylic acid: an orally active, selective very late antigen-4 antagonist. J Med Chem 52:7974–7992

    CAS  Google Scholar 

  199. Faull RJ, Ginsberg MH (1996) Inside-out signaling through integrins. J Am Soc Nephrol 7:1091–1097

    CAS  Google Scholar 

  200. Qin J, Vinogradova O, Plow EF (2004) Integrin bidirectional signaling: a molecular view. PLoS Biol 2:0726–0729

    CAS  Google Scholar 

  201. Liu G (2001) Small-molecule antagonists of the LFA-1/ICAM-1 interaction as potential therapeutic agents. Expert Opin Ther Patents 11:1383–1393

    CAS  Google Scholar 

  202. Potin D, Launay M, Monatlik F et al (2006) Discovery and development of 5-[(5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non-7-ylmethyl]-3-thiophenecarboxylic acid (BMS-587101) – a small-molecule antagonist of leukocyte function associated antigen-1. J Med Chem 49:6946–6949

    CAS  Google Scholar 

  203. Kallen J, Welzenbach K, Ramage P et al (1999) Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol 292:1–9

    CAS  Google Scholar 

  204. Shimaoka M, Salas A, Yang W et al (2003) Small-molecule integrin antagonists that bind to the β2 subunit I-like domain and activate signals in one direction and block them in the other. Immunity 19:391–402

    CAS  Google Scholar 

  205. Welzenbach K, Hommel U, Weitz-Schmidt G (2002) Small-molecule inhibitors induce conformational changes in the I domain and the I-like domain of lymphocyte function associated antigen-1. Molecular insights into integrin inhibition. J Biol Chem 277:10590–10598

    CAS  Google Scholar 

  206. Miller MW, Basra S, Kulp DW et al (2009) Small-molecule inhibitors of integrin α2β1 that prevent pathological thrombus formation via an allosteric mechanism. Proc Natl Acad Sci USA 106:719–724

    CAS  Google Scholar 

  207. Choi S, Vilaire G, Marcinkiewicz C et al (2007) Small-molecule inhibitors of integrin α2β1. J Med Chem 50:5457–5462

    CAS  Google Scholar 

  208. Russell RB, Breed J, Barton GJ (1992) Conservation analysis and structure prediction of the SH2 family of phosphotyrosine binding domains. FEBS Lett 304:15–20

    CAS  Google Scholar 

  209. Kasembeli MM, Xu X, Tweardy DJ (2009) SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front Biosci 14:1010–1022

    Google Scholar 

  210. Gan W, Roux B (2009) Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74:996–1007

    CAS  Google Scholar 

  211. Songyang Z, Shoelson SE, Chaudhuri M et al (1993) Sh2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    CAS  Google Scholar 

  212. Songyang Z, Oelson SE, McGlade J et al (1994) Specific motifs recognized by the sh2 domains of csk, 3bp2, fps/fes, grb-2, hcp, shc, syk, and vav. Mol Cell Biol 14:2777–2785

    CAS  Google Scholar 

  213. Campbell SJ, Jackson RM (2003) Diversity in the SH2 domain family phosphotyrosyl peptide binding site. Protein Eng 16:217–227

    CAS  Google Scholar 

  214. Sawyer TK, Bohacek RS, Dalgarno DC et al (2002) Src homology-2 inhibitors: peptidomimetic and nonpeptide. Mini Rev Med Chem 2:475–488

    CAS  Google Scholar 

  215. Lu XL, Cao X, Liu XY, Jiao BH (2010) Recent progress of Src SH2 and SH3 inhibitors as anticancer agents. Curr Med Chem 17:1117–1124

    CAS  Google Scholar 

  216. Shakespeare WC (2001) SH2 domain inhibition: a problem solved? Curr Opin Chem Biol 5:409–415

    CAS  Google Scholar 

  217. Violette SM, Guan W, Bartlett C et al (2001) Bone-targeted Src SH2 inhibitors block Src cellular activity and osteoclast-mediated resorption. Bone 28:54–64

    CAS  Google Scholar 

  218. Shakespeare W, Yang M, Bohacek R (2001) Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity. Proc Natl Acad Sci USA 97:9373–9378

    Google Scholar 

  219. Shakespeare WC, Metcalf CA III, Wang Y et al (2003) Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr Opin Drug Discov Dev 6:729–741

    CAS  Google Scholar 

  220. Lange G, Lesuisse D, Deprez P et al (2003) Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of pp 60Src are identical to those for high affinity binding of full length inhibitors. J Med Chem 46:5184–5195

    CAS  Google Scholar 

  221. Garcia-Echeverria C, Furet P, Gay B et al (1998) Potent antagonists of the SH2 domain of Grb2: optimization of the X+1 position of 3-amino-Z-Tyr(PO3H2)-X+1-Asn-NH2. J Med Chem 41:1741–1744

    CAS  Google Scholar 

  222. Schoepfer J, Fretz H, Gay B et al (1999) Highly potent inhibitors of the Grb2-SH2 domain. Bioorg Med Chem Lett 9:221–226

    CAS  Google Scholar 

  223. Gay B, Suarez S, Caravatti G et al (1999) Selective Grb2 inhibitors as anti-Ras therapy. Cell 83:235–241

    CAS  Google Scholar 

  224. Yao ZJ, Richter CR, Cao T et al (1999) Potent inhibition of Grb2 SH2 domain binding by non-phosphate-containing ligands. J Med Chem 42:25–35

    CAS  Google Scholar 

  225. Gao Y, Luo J, Yao ZJ et al (2000) Inhibition of Grb2 SH2 domain binding by non-phosphate-containing ligands. 2. 4-(2-Malonyl)phenylalanine as a potent phosphotyrosyl mimetic. J Med Chem 43:911–920

    CAS  Google Scholar 

  226. Park IH, Li C (2009) Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J Mol Recognit 24:254–265

    Google Scholar 

  227. Huang N, Nagarsekar A, Xia G et al (2004) Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in silico screening against the pY+3 binding site. J Med Chem 47:3502–3511

    CAS  Google Scholar 

  228. Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702

    CAS  Google Scholar 

  229. Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231

    CAS  Google Scholar 

  230. Tonikian R, Zhang Y, Sazinsky SL et al (2008) A specificity map for the PDZ domain family. PLoS Biol 6:e239

    Google Scholar 

  231. Stiffler MA, Chen JR, Grantcharova VP et al (2007) PDZ domain binding selectivity is optimized across the mouse proteome. Science 317:364–369

    CAS  Google Scholar 

  232. Doyle DA, Lee A, Lewis J et al (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:106–1076

    Google Scholar 

  233. Kurakin A, Swistowski A, Wu SC, Bredesen DE (2007) The PDZ domain as a complex adaptive system. PLoS One 2:e953

    Google Scholar 

  234. Ducki S, Bennett E (2009) Protein-protein interactions: recent progress in the development of selective PDZ inhibitors. Curr Chem Biol 3:146–158

    CAS  Google Scholar 

  235. Wong HC, Bourdelas A, Krauss A et al (2003) Direct binding of the PDZ domain of dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12:1251–1260

    CAS  Google Scholar 

  236. Zhang Y, Appleton BA, Wiesmann C et al (2009) Inhibition of Wnt signaling by dishevelled PDZ peptides. Nat Chem Biol 5:217–219

    CAS  Google Scholar 

  237. Fujiu N, You L, Xu Z et al (2007) An antagonist of dishevelled protein-protein interaction suppresses β-catenin-dependent tumor cell growth. Cancer Res 67:573–579

    Google Scholar 

  238. Grandy D, Shan J, Zhang X et al (2009) Discovery and characterization of a small-molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem 284:16256–16263

    CAS  Google Scholar 

  239. Lee HJ, Wang NX, Shi DL, Zheng JJ (2009) Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein dishevelled. Angew Chem Int Ed Engl 48:6448–6452

    CAS  Google Scholar 

  240. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kB, inflammation and cancer. Nat Rev Cancer 10:561–574

    CAS  Google Scholar 

  241. Srinivasula SM, Hegde R, Saleh A et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    CAS  Google Scholar 

  242. Shiozaki EN, Chai J, Rigotti DJ et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527

    CAS  Google Scholar 

  243. Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    CAS  Google Scholar 

  244. Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    CAS  Google Scholar 

  245. Liu Z, Sun C, Olejniczak ET et al (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008

    CAS  Google Scholar 

  246. Wu G, Chai J, Suber TL et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    CAS  Google Scholar 

  247. Chai J, Du C, Wu JW et al (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    CAS  Google Scholar 

  248. Kipp RA, Case MA, Wist AD et al (2002) Molecular targeting of inhibitors of apoptosis proteins based on small-molecule mimics of natural binding partners. Biochemistry 41:7344–7349

    CAS  Google Scholar 

  249. Zobel K, Wang L, Varfolomeev E et al (2006) Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem Biol 1:525–534

    CAS  Google Scholar 

  250. Peng Y, Sun H, Nikolovska-Coleska Z et al (2008) Design, synthesis and evaluation of potent and orally bioavailable diazabicyclic smac mimetics. J Med Chem 51:8158–8162

    CAS  Google Scholar 

  251. Sun H, Stuckey JA, Nikolovska-Coleska Z et al (2008) Structure-based design, synthesis, evaluation and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J Med Chem 51:7169–7180

    CAS  Google Scholar 

  252. Oost TK, Sun C, Armstrong RC et al (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47:4417–4426

    CAS  Google Scholar 

  253. Park CM, Sun C, Olejniczak ET et al (2005) Non-peptidic small-molecule inhibitors of XIAP. Bioorg Med Chem Lett 15:771–775

    CAS  Google Scholar 

  254. Chauhan D, Neri P, Velankar M et al (2007) Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109:1220–1227

    CAS  Google Scholar 

  255. Gaither A, Porter D, Yao Y et al (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67:11493–11498

    CAS  Google Scholar 

  256. Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278:49517–49522

    CAS  Google Scholar 

  257. Li L, Thomas RM, Suzuki H et al (2004) A small-molecule smac mimic potentiates TRAIL- and TNF-α-mediated cell death. Science 305:1471–1474

    CAS  Google Scholar 

  258. Bertrand MJ, Milutinovic S, Dickson KM et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    CAS  Google Scholar 

  259. Sun H, Nikolovska-Coleska Z, Lu J et al (2007) Design, synthesis and characterization of a potent, nonpeptide, cell-permeable, bivalent smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129:15279–15294

    CAS  Google Scholar 

  260. Nikolovska-Coleska Z, Meagher JL, Jiang S et al (2008) Interaction of a cyclic, bivalent Smac mimetic with the X-linked inhibitor of apoptosis protein. Biochemistry 47:9811–9824

    CAS  Google Scholar 

  261. Sun C, Cai M, Meadows RP et al (2000) NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275:33777–33781

    CAS  Google Scholar 

  262. Cherepanov P, Sun ZYJ, Rahman S et al (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12:526–532

    CAS  Google Scholar 

  263. Cherepanov P, Ambrosio ALB, Rahman S et al (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102:17308–17313

    CAS  Google Scholar 

  264. Maertens G, Cherepanov P, Pluymers W et al (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539

    CAS  Google Scholar 

  265. Christ F, Voet A, Marchand A et al (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448

    CAS  Google Scholar 

  266. Du L, Zhao Y, Chen J et al (2008) D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem Biophys Res Commun 375:139–144

    CAS  Google Scholar 

  267. De Luca L, Barreca ML, Ferro S et al (2009) Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. ChemMedChem 4:1311–1316

    Google Scholar 

  268. De Luca L, Ferro S, Gitto R et al (2010) Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg Med Chem 18:7515–7521

    Google Scholar 

  269. Dey A, Chitsaz F, Abbasi A et al (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 100:8758–8763

    CAS  Google Scholar 

  270. Wu SY, Lee AY, Hou SY et al (2006) Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 20:2383–2396

    CAS  Google Scholar 

  271. Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282:13141–13145

    CAS  Google Scholar 

  272. Liu Y, Wang X, Zhang J et al (2008) Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry 47:6403–6417

    CAS  Google Scholar 

  273. Vollmuth F, Blankenfeldt W, Geyer M (2009) Structures of the dual bromodomains of the P-TEFb-activatin protein Brd4 at atomic resolution. J Biol Chem 284:36547–36556

    CAS  Google Scholar 

  274. Myoshi S, Ooike S, Iwata K et al (2009) Antitumor agent. PCT Int Appl WO2009084693

    Google Scholar 

  275. Filippakopoulos P, Qi J, Picaud S et al (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073

    CAS  Google Scholar 

  276. Mertz JA, Conery AR, Bryant BM et al (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 108:16669–16674

    CAS  Google Scholar 

  277. Delmore JE, Issa GC, Lemieux ME et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-myc. Cell 146:904–917

    CAS  Google Scholar 

  278. Chung C, Coste H, White JH et al (2011) Discovery and characterization of small-molecule inhibitors of the BET family bromodomains. J Med Chem 54:3827–3838

    CAS  Google Scholar 

  279. Nicodeme E, Jeffrey KL, Schaefer U et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468:1119–1123

    CAS  Google Scholar 

  280. Dawson MA, Prinjha RK, Dittman A et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533

    CAS  Google Scholar 

  281. Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med 13:e29

    Google Scholar 

  282. Chung C, Witherington J (2011) Progress in the discovery of small-molecule inhibitors of bromodomain-histone interactions. J Biomol Screen 16:1170–1185

    CAS  Google Scholar 

  283. Chung C, Dean AW, Woolven JM, Bamborough P (2012) Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J Med Chem 55:576–586

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Kent Stewart for reading and offering comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Wendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendt, M.D. (2012). Protein-Protein Interactions as Drug Targets. In: Wendt, M. (eds) Protein-Protein Interactions. Topics in Medicinal Chemistry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28965-1_1

Download citation

Publish with us

Policies and ethics