Skip to main content

Hybrid Ant Bee Colony Algorithm for Volcano Temperature Prediction

  • Conference paper
Emerging Trends and Applications in Information Communication Technologies (IMTIC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 281))

Included in the following conference series:

Abstract

A social insect’s techniques become more focus by researchers because of its nature behavior processing and by training neural networks through agents. Chief among them are Swarm Intelligence (SI), Ant Colony Optimization (ACO), and recently Artificial Bee Colony algorithm, which produced easy way for solving combinatorial problems and for training NNs. These social based techniques mostly used for finding optimal weight values in NNs learning. Usually, NNs trained by a standard and well known algorithm called Backpropagation (BP) have difficulties such as trapping in local minima, slow convergence or might fail sometimes. For recovering the above cracks the population or social insects based algorithms used for training NNs for minimizing network output error. Here, the hybrid of nature behavior agents’ ant and bees combine’s techniques used for training ANNs. The simulation result of a hybrid algorithm compared with, ABC and BP training algorithms. From the experimental results, the proposed Hybrid Ant Bee Colony (HABC) algorithm did improve the classification accuracy for prediction of a volcano time-series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romano, Michele, A.U., et al.: Artificial neural network for tsunami forecasting. Journal of Asian Earth Sciences 36, 29–37 (2009)

    Article  Google Scholar 

  2. Ghazali, R., Hussain, A.J., Liatsis, P.: Dynamic Ridge Polynomial Neural Network: Forecasting the univariate non-stationary and stationary trading signals. Expert Systems with Applications 38(4), 3765–3776 (2011)

    Article  Google Scholar 

  3. Rumelhart, D.E., McClelland, J.L.: And the PDP Research Group,Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, 2. MIT Press, Cambridge (1986)

    Google Scholar 

  4. Osamu, F.: Statistical estimation of the number of hidden units for feedforward neural networks. Neural Networks 11(5), 851–859 (1998)

    Article  Google Scholar 

  5. Shokri, A., Hatami, T., et al.: Near critical carbon dioxide extraction of Anise (Pimpinella Anisum L.) seed: Mathematical and artificial neural network modeling. The Journal of Supercritical Fluids 58(1), 49–57 (2011)

    Article  Google Scholar 

  6. Thwin, M.M.T., Quah, T.-S.: Application of neural networks for software quality prediction using object-oriented metrics. Journal of Systems and Software 76(2), 147–156 (2005)

    Article  Google Scholar 

  7. Taylor, S.R., Denny, M.D., Vergino, E.S., Glaser, R.E.: Regional discrimination between NTS explosions and earthquakes. B. Seismol. Soc. Am. 79, 1142–1176 (1989)

    Google Scholar 

  8. Adeli, H., Panakkat, A.: A probabilistic neural network for earthquake magnitude prediction. Earthquake Engineering 22, 1018–1024 (2009) ISBN- 0893-6080

    Google Scholar 

  9. Connor, J., Atlas, L.: Recurrent Neural Networks andTime Series Prediction. In: IEEE International Joint Conference on Neural Networks, New York, USA, pp. I 301–I 306.

    Google Scholar 

  10. Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., and Marinaro, M.: Automatic Classification of seismic signals at Mt. Vesuvius Volcano, Italy using Neural Networks. B. Seismol. Soc. Am., 95, 185–196, (2005)

    Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. Cass, R., Radl, B.: Adaptive process optimization using functional-link networks and evolutionary algorithm. Control Engineering Practice 4(11), 1579–1584 (1996)

    Article  Google Scholar 

  13. Gail, A. C.: Network models for pattern recognition and associative memory. Neural Networks 2(4), 243–257 (1989)

    Article  Google Scholar 

  14. Tyan, C.-Y., Wang, P.P.: An application on intelligent control using neural network and fuzzy logic. Neurocomputing 12(4), 345–363 (1996)

    Article  Google Scholar 

  15. Shah, H., Ghazali, R., Nawi, N.M.: Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction. Journal of Computing 3(6), 135–142 (2011)

    Google Scholar 

  16. Rosenblatt, F.: A Probabilistic Model for Information Storage and Organization in the Brain, vol. 65, pp. 386–408. Cornell Aeronautical Laboratory (1958)

    Google Scholar 

  17. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, NY (1999)

    MATH  Google Scholar 

  18. Yao, X.: Evolutionary artificial neural networks. International Journal of Neural Systems 4(3), 203–222 (1993)

    Article  Google Scholar 

  19. Ilonen, J., Kamarainen, J.-K., et al.: Evolution Training Algorithm for Feed-Forward Neural Networks. Neural Processing Letters 17(1), 93–105 (2003)

    Article  Google Scholar 

  20. Mendes, R., Cortez, P., Rocha, M., Neves, J.: Particle swarm for feedforward neural network training. In: Proceedings of the International Joint Conference on on Neural Networks, vol. 2, pp. 1895–1899 (2002)

    Google Scholar 

  21. Dorigo, M., Di Caro, G., Corne, D., Dorigo, M., Glover, F.: The ant colony optimization meta-heuristic. New Ideas in Optimization, 11–32 (1999)

    Google Scholar 

  22. Ozturk, C., Karaboga, D.: Hybrid Artificial Bee Colony algorithm for neural network training. In: 2011 IEEE Congress on Evolutionary Computation, CEC 2011 (2011)

    Google Scholar 

  23. Karaboga, D., Akay, B., Ozturk, C.: Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Gori, M., Tesi, A.: On the problem of local minima in back-propagation. IEEE Trans. Pattern Anal. Mach. Intell. 14(1), 76–86 (1992)

    Article  Google Scholar 

  25. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  26. Schneider, S.H., Easterling, W.E., Mearns, L.O.: Adaptation: Sensitivity to natural variability, agent assumptions and dynamic climate changes. Climatic Change 45, 203–221 (2000)

    Article  Google Scholar 

  27. Tiira, T.: Detecting tele-seismic events using artificial neural networks. Comput. Geosci. 25, 929–939 (1999)

    Article  Google Scholar 

  28. Chau, K.W.: Particle swarm optimization training algorithm for A NNs in stage prediction of Shing Mun River. Journal of Hydrology, 363–367 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shah, H., Ghazali, R., Nawi, N.M. (2012). Hybrid Ant Bee Colony Algorithm for Volcano Temperature Prediction. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds) Emerging Trends and Applications in Information Communication Technologies. IMTIC 2012. Communications in Computer and Information Science, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28962-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28962-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28961-3

  • Online ISBN: 978-3-642-28962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics