Advertisement

Bio-Inspired Optimization Methods

  • Oscar Castillo
  • Patricia Melin
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES, volume 1)

Abstract

In this chapter a brief overview of the basic concepts from bio-inspired optimization methods needed for this work is presented. In particular, the methods that are covered in this chapter are: particle swarm optimization, genetic algorithms and ant colony optimization.

References

  1. 1.
    R. Martinez, A. Rodriguez, O. Castillo, L.T. Aguilar, Type-2 fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization, in Proceedings of the IEEE International Conference on Granular Computing, GrC , 2010, pp. 724–727Google Scholar
  2. 2.
    K.-J. Park, S.-K. Oh, W. Pedrycz, Design of interval type-2 fuzzy neural networks and their optimization using real-coded genetic algorithms, in Proceedings of the IEEE Conference on Fuzzy Systems, Jeju, Korea, 2009, pp. 2013–2018Google Scholar
  3. 3.
    R. Martinez, O. Castillo, L.T. Aguilar, A. Rodriguez, Optimization of type-2 fuzzy logic controllers using PSO applied to linear plants. Stud. Comput. Intell. 318, 181–193 (2010)CrossRefGoogle Scholar
  4. 4.
    R.A. Aliev, W. Pedrycz, B.G. Guirimov, R.R. Aliev, U. Ilhan, M. Babagil, S. Mammadli, Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization. Inf. Sci. 181(9), 1591–1608 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak, A novel type-2 fuzzy membership function: Application to the prediction of noisy data, in Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA 2010, 2010, pp. 128–133Google Scholar
  6. 6.
    W.-H.R. Jeng, C.-Y. Yeh, S.-J. Lee, General type-2 fuzzy neural network with hybrid learning for function approximation, in Proceedings of the IEEE Conference on Fuzzy Systems, Jeju, Korea, 2009, pp. 1534–1539Google Scholar
  7. 7.
    J. Cao, P. Li, H. Liu, D. Brown, Adaptive fuzzy controller for vehicle active suspensions with particle swarm optimization, in Proceedings of SPIE—The International Society of Optical Engineering, 2008, p. 7129Google Scholar
  8. 8.
    G.-S. Kim, I.-S. Ahn, S.-K. Oh, The design of optimized fuzzy neural networks and its application. Trans. Korean Inst. Electr. Eng. 58(6), 1615–1623 (2009)Google Scholar
  9. 9.
    X.-Z. Zhao, Y.-B. Gao, J.-F. Zeng, Y.-P. Yang, PSO type-reduction method for geometric interval type-2 fuzzy logic systems. J. Harbin Inst. Technol. 15(6), 862–867 (2008)Google Scholar
  10. 10.
    O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141, 5–31 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    O. Castillo, P. Melin, Soft Computing for Control of Non-Linear Dynamical Systems (Springer, Heidelberg, 2001)MATHCrossRefGoogle Scholar
  12. 12.
    T.W. Chua, W.W. Tan, Genetically evolved fuzzy rule-based classifiers and application to automotive classification. Lecture Notes in Computer Science, vol. 5361 (2008), pp. 101–110Google Scholar
  13. 13.
    O. Cordon, F. Herrera, P. Villar, Analysis and guidelines to obtain a good uniform fuzzy partition granularity for fuzzy rule-based systems using simulated annealing. Int. J. Approx. Reason. 25, 187–215 (2000)MATHCrossRefGoogle Scholar
  14. 14.
    C.-F. Juang, C.-H. Hsu, Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1528–1542 (2009)CrossRefGoogle Scholar
  15. 15.
    O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Info. Sci. 192(1), 19–38 (2012)Google Scholar
  16. 16.
    C.-F. Juang, C.-H. Hsu, C.-F. Chuang, Reinforcement self-organizing interval type-2 fuzzy system with ant colony optimization, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, 2009, pp. 771–776Google Scholar
  17. 17.
    R. Martinez-Marroquin, O. Castillo, J. Soria, Parameter tuning of membership functions of a type-1 and type-2 fuzzy logic controller for an autonomous wheeled mobile robot using ant colony optimization, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, 2009, pp. 4770–4775Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Oscar Castillo
    • 1
  • Patricia Melin
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyChula VistaUSA

Personalised recommendations