Advertisement

Introduction

  • Oscar Castillo
  • Patricia Melin
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES, volume 1)

Abstract

A review of the optimization methods used in the design of type-2 fuzzy systems, which are relatively novel models of imprecision, is presented in this book. The fundamental focus of the book is based on the basic reasons of the need for optimizing type-2 fuzzy systems for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy systems for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and the right structure of the fuzzy systems. In this book, we review the application of genetic algorithms, particle swarm optimization and ant colony optimization, as three different paradigms that help in the design of optimal type-2 fuzzy systems. We also provide a comparison of results for the different optimization methods for the case of designing type-2 fuzzy systems.

References

  1. 1.
    P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems (Taylor and Francis, London, 2002)Google Scholar
  2. 2.
    J.M. Mendel, Uncertainty, fuzzy logic, and signal processing. Sig. Process. J. 80, 913–933 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. Info. Sci. 8, 43–80 (1975)CrossRefGoogle Scholar
  4. 4.
    J.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing (Prentice Hall, Upper Saddle River, 1997)Google Scholar
  5. 5.
    O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications (Springer, Heidelberg, 2008)MATHGoogle Scholar
  6. 6.
    N.N. Karnik, J.M. Mendel, An Introduction to Type-2 Fuzzy Logic Systems, Technical Report, (University of Southern California, 1998)Google Scholar
  7. 7.
    M. Wagenknecht, K. Hartmann, Application of fuzzy sets of type 2 to the solution of fuzzy equations systems. Fuzzy Sets Syst. 25, 183–190 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    R.R. Yager, Fuzzy subsets of type II in decisions. J. Cybern. 10, 137–159 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Hagras, Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Coupland, R. John, New geometric inference techniques for type-2 fuzzy sets. Int. J. Approx. Reason. 49, 198–211 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    J.T. Starczewski, Efficient triangular type-2 fuzzy logic systems. Int. J. Approx. Reason. 50, 799–811 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    C. Walker, E. Walker, Sets with type-2 operations. Int. J. Approx. Reason. 50, 63–71 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    N.S. Bajestani, A. Zare, in Application of Optimized Type-2 Fuzzy Time Series to Forecast Taiwan Stock Index. Second International Conference on Computer, Control and Communication (2009), pp. 275–280Google Scholar
  14. 14.
    J.R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Info. Sci. 179, 2175–2193 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, I.B. Turksen, Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput. Ind. 62, 125–137 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Leal-Ramirez, O. Castillo, P. Melin, A. Rodriguez-Diaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Info. Sci. 181, 519–535 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Martinez, O. Castillo, L. Aguilar, Optimization with genetic algorithms of interval type-2 fuzzy logic controllers for an autonomous wheeled mobile robot: a comparison under different kinds of perturbations, in Proceedings of the IEEE FUZZ Conference, 2008, paper # FS0225Google Scholar
  18. 18.
    O. Castillo, P. Melin, Soft Computing for Control of Non-Linear Dynamical Systems (Springer, Heidelberg, 2001)MATHCrossRefGoogle Scholar
  19. 19.
    O. Castillo, L.T. Aguilar, N.R. Cazarez-Castro, S. Cardenas, Systematic design of a stable type-2 fuzzy logic controller. Appl. Soft Comput. J. 8, 1274–1279 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Hsiao, T.H.S. Li, J.Z. Lee, C.H. Chao, S.H. Tsai, Design of interval type-2 fuzzy sliding-mode controller. Info. Sci. 178(6), 1686–1716 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Melin, O. Castillo, A new method for adaptive model-based control of non-linear dynamic plants using a neuro-fuzzy-fractal approach. J. Soft Comput. 5, 171–177 (2001)MATHCrossRefGoogle Scholar
  22. 22.
    P. Melin, O. Castillo, A new method for adaptive model-based control of nonlinear plants using type-2 fuzzy logic and neural networks, in Proceedings of the IEEE FUZZ Conference, 2003, pp. 420–425Google Scholar
  23. 23.
    T. Ozen, J.M. Garibaldi, Investigating Adaptation in Type-2 Fuzzy Logic Systems Applied to Umbilical Acid-Base Assessment, in European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (EUNITE 2003), 2003, OuluGoogle Scholar
  24. 24.
    R. Sepulveda, O. Castillo, P. Melin, O. Montiel, An efficient computational method to implement type-2 fuzzy logic in control applications. Adv. Soft Comput. 41, 45–52 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, O. Montiel, Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Info. Sci. 177(10), 2023–2048 (2007)CrossRefGoogle Scholar
  26. 26.
    P. Melin, O. Castillo, Hybrid Intelligent Systems for Pattern Recognition (Springer, Heidelberg, 2005)MATHGoogle Scholar
  27. 27.
    O. Mendoza, P. Melin, O. Castillo, G. Licea, Type-2 fuzzy logic for improving training data and response integration in modular neural networks for image recognition. Lecture Notes in Artificial Intelligence, vol. 4529 (2007), pp. 604–612Google Scholar
  28. 28.
    O. Mendoza, P. Melin, O. Castillo, Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J. 9, 1377–1387 (2009)CrossRefGoogle Scholar
  29. 29.
    O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24, 1115–1133 (2009)MATHCrossRefGoogle Scholar
  30. 30.
    J. Urias, D. Hidalgo, P. Melin, O. Castillo, A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems. Adv. Soft Comput. 41, 5–15 (2007)CrossRefGoogle Scholar
  31. 31.
    P. Melin, O. Castillo, An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Info. Sci. 177, 1543–1557 (2007)CrossRefGoogle Scholar
  32. 32.
    M.H.F. Zarandi, I.B. Turksen, O.T. Kasbi, Type-2 fuzzy modelling for desulphurization of steel process. Expert Syst. Appl. 32, 157–171 (2007)Google Scholar
  33. 33.
    O. Castillo, P. Melin, Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic and fractal theory. IEEE Trans. Neural Netw. 13, 1395–1408 (2002)CrossRefGoogle Scholar
  34. 34.
    L. Astudillo, O. Castillo, L.T. Aguilar, R. Martinez, Hybrid control for an autonomous wheeled mobile robot under perturbed torques. Lecture Notes in Computer Science, vol. 4529 (2007), pp. 594–603Google Scholar
  35. 35.
    J.R. Castro, O. Castillo, P. Melin, An interval type-2 fuzzy logic toolbox for control applications, in Proceedings of FUZZ-IEEE 2007, London, pp. 1–6Google Scholar
  36. 36.
    J.R. Castro, O. Castillo, L.G. Martinez, Interval type-2 fuzzy logic toolbox. Eng. Lett. 15(1), 14 (2007)Google Scholar
  37. 37.
    J.R. Castro, O. Castillo, P. Melin, L.G. Martinez, S. Escobar, I. Camacho, Building fuzzy inference systems with the interval type-2 fuzzy logic toolbox. Adv. Soft Comput. 41, 53–62 (2007)CrossRefGoogle Scholar
  38. 38.
    R. Sepulveda, O. Montiel, G. Lizarraga, O. Castillo, Modeling and simulation of the defuzzification stage of a type-2 fuzzy controller using the Xilinx system generator and Simulink. Stud. Comput. Intell. 257, 309–325 (2009)CrossRefGoogle Scholar
  39. 39.
    B. Widrow, J.R. Glover, Adaptive noise cancelling: principles and applications. IEEE Proc. 63, 1692–1716 (1975)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Oscar Castillo
    • 1
  • Patricia Melin
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyChula VistaUSA

Personalised recommendations