Skip to main content

Persister Cells: Molecular Mechanisms Related to Antibiotic Tolerance

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 211))

Abstract

It is a given that new antibiotics are needed to combat drug-resistant pathogens. However, this is only a part of the need—we actually never had antibiotics capable of eradicating an infection. All pathogens produce a small subpopulation of dormant persister cells that are highly tolerant to killing by antibiotics. Once an antibiotic concentration drops, surviving persisters re-establish the population, causing a relapsing chronic infection. Persisters are especially significant when the pathogen is shielded from the immune system by biofilms, or in sites where the immune components are limited—in the nervous system, the stomach, or inside macrophages.

Antibiotic treatment during a prolonged chronic infection of P. aeruginosa in the lungs of patients with cystic fibrosis selects for high-persister (hip) mutants. Similarly, treatment of oral thrush infection selects for hip mutants of C. albicans. These observations suggest a direct causality between persisters and recalcitrance of the disease. It appears that tolerance of persisters plays a leading role in chronic infections, while resistance is the leading cause of recalcitrance to therapy in acute infections. Studies of persister formation in E. coli show that mechanisms of dormancy are highly redundant. Isolation of persisters produced a transcriptome which suggests a dormant phenotype characterized by downregulation of energy-producing and biosynthetic functions. Toxin–antitoxin modules represent a major mechanism of persister formation. The RelE toxin causes dormancy by cleaving mRNA; the HipA toxin inhibits translation by phosphorylating elongation factor Ef-Tu, and the TisB toxin forms a membrane pore, leading to a decrease in pmf and ATP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Dhaheri RS, Douglas LJ (2008) Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother 52:1884–7

    Article  PubMed  CAS  Google Scholar 

  • Alix E, Blanc-Potard A (2009) Hydrophobic peptides: novel regulators within bacterial membranes. Mol Microbiol 72:5–11

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  Google Scholar 

  • Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–55

    PubMed  CAS  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet II:497–500

    Article  Google Scholar 

  • Christensen SK, Gerdes K (2004) Delayed-relaxed response explained by hyperactivation of RelE. Mol Microbiol 53:587–97

    Article  PubMed  CAS  Google Scholar 

  • Correia FF, D'Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV, Lewis K (2006) Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188:8360–7

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22

    Article  PubMed  CAS  Google Scholar 

  • Courcelle J, Khodursky A, Peter B, Brown P, Hanawalt P (2001) Comparative gene expression profiles following UV exposure in wild type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  CAS  Google Scholar 

  • De Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM, Beullens S, Cornelis P, Michiels J (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73–9

    Article  PubMed  Google Scholar 

  • Del Pozo J, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clinical Pharmacol Ther 82:204–9

    Article  Google Scholar 

  • Dörr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760

    Article  PubMed  Google Scholar 

  • Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317

    Article  PubMed  Google Scholar 

  • Falla TJ, Chopra I (1998) Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother 42:3282–4

    PubMed  CAS  Google Scholar 

  • Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–72

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–91

    Article  PubMed  CAS  Google Scholar 

  • Gerdes K, Bech FW, Jorgensen ST, Lobner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyenburg K (1986a) Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 5:2023–9

    PubMed  CAS  Google Scholar 

  • Gerdes K, Rasmussen PB, Molin S (1986b) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA 83:3116–20

    Article  PubMed  CAS  Google Scholar 

  • Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–51

    Article  PubMed  Google Scholar 

  • Hansen S, Lewis K, Vulić M (2008) The role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ (2005a) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–95

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005b) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–94

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2007) A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol Lett 272:172–81

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53:2253–8

    Article  PubMed  CAS  Google Scholar 

  • Hayes F (2003) Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–9

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Warren DK (2009) Central nervous system infections: meningitis and brain abscess. Infect Dis Clin North Am 23:609–23

    Article  PubMed  Google Scholar 

  • Hu Y, Coates AR (2005) Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett 243:117–24

    Article  PubMed  CAS  Google Scholar 

  • Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–39

    PubMed  CAS  Google Scholar 

  • Kawano M, Aravind L, Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64:738–54

    Article  PubMed  CAS  Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–80

    Article  PubMed  CAS  Google Scholar 

  • LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–46

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44

    Article  PubMed  CAS  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–45

    Article  PubMed  CAS  Google Scholar 

  • Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–62

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  PubMed  CAS  Google Scholar 

  • McKenzie MD, Lee PL, Rosenberg SM (2003) The dinB operon and spontaneous mutation in Escherichia coli. J Bacteriol 185:3972–7

    Article  PubMed  CAS  Google Scholar 

  • Motiejunaite R, Armalyte J, Markuckas A, Suziedeliene E (2007) Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 268:112–9

    Article  PubMed  CAS  Google Scholar 

  • Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–75

    PubMed  CAS  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199

    Google Scholar 

  • Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–76

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–10

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K, Gerdes K (1999) Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol 32:1090–102

    Article  PubMed  CAS  Google Scholar 

  • Peterson WL, Fendrick AM, Cave DR, Peura DA, Garabedian-Ruffalo SM, Laine L (2000) Helicobacter pylori-related disease: guidelines for testing and treatment. Arch Intern Med 160:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Phillips I, Culebras E, Moreno F, Baquero F (1987) Induction of the SOS response by new 4-quinolones. J Antimicrob Chemother 20:631–8

    Article  PubMed  CAS  Google Scholar 

  • Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767

    Article  PubMed  Google Scholar 

  • Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 52:41–79

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–62

    Article  PubMed  CAS  Google Scholar 

  • Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:396–401

    Article  PubMed  CAS  Google Scholar 

  • Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53–61

    Article  PubMed  Google Scholar 

  • Singletary LA, Gibson JL, Tanner EJ, McKenzie GJ, Lee PL, Gonzalez C, Rosenberg SM (2009) An SOS-regulated type 2 toxin-antitoxin system. J Bacteriol 191:7456–7465

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–92

    Article  PubMed  CAS  Google Scholar 

  • Spoering A (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144

    Article  PubMed  CAS  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–8

    Article  PubMed  CAS  Google Scholar 

  • Unoson C, Wagner E (2008) A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70:258–70

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Laslop N, Lee H, Neyfakh AA (2006) Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 188:3494–7

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Argaman L, Wagner EG, Altuvia S (2004) The small RNA Istr inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 14:2271–2276

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–75

    Article  PubMed  CAS  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–23

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Swartz MN (1990) Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob Agents Chemother 34:1938–43

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–95

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewis, K. (2012). Persister Cells: Molecular Mechanisms Related to Antibiotic Tolerance. In: Coates, A. (eds) Antibiotic Resistance. Handbook of Experimental Pharmacology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28951-4_8

Download citation

Publish with us

Policies and ethics