Skip to main content

Nonmultiplying Bacteria are Profoundly Tolerant to Antibiotics

  • Chapter
  • First Online:
Antibiotic Resistance

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 211))

Abstract

Bacteria survive treatments with antimicrobial agents; they achieve this in two ways. Firstly, bacteria quickly become tolerant to these agents. This tolerance is temporary, reversible, and associated with slowing of the multiplication rate. Secondly, bacteria can undergo genetic mutations leading to permanent clonal resistance to antimicrobial agents. In patients with infections, nonmultiplying bacteria, some of which may be viable but nonculturable, exist side by side with multiplying bacteria. Current antibiotics capable of killing actively multiplying bacteria have very limited or no effect against nonmultiplying bacteria. Treatment of such infections requires a regimen of multiple antimicrobial agents in order to control nonmultiplying persistent bacteria. This is especially important in tuberculosis where there is co-existence of slowly multiplying tolerant bacteria with fast growing sensitive organisms. For this reason, a prolonged length of chemotherapy, lasting 6 months, is necessary to achieve cure. This long duration of treatment is due to the slow, inadequate effect of antibiotics on nonmultiplying persistent bacteria. Similar problems with eradication of persistent bacteria are evident in the treatment of biofilms. These bacteria serve as a pool for recurrent infections. Extended courses of antibiotics increase the likelihood of genetic resistance, raise the cost of treatments, and lead to more side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107

    PubMed  CAS  Google Scholar 

  • Anderson M, Bollinger D, Hagler A, Hartwell H, Rivers B, Ward K, Steck TR (2004) Viable but nonculturable bacteria are present in mouse and human urine specimens. J Clin Microbiol 42:753–758

    PubMed  Google Scholar 

  • Arnold KW, Kaspar CW (1995) Starvation- and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 61:2037–2039

    PubMed  CAS  Google Scholar 

  • Austrian R, Gold J (1964) Pneumococcal bacteremia with especial reference to bacteremic Pneumococcal pneumonia. Ann Intern Med 60:759–776

    PubMed  CAS  Google Scholar 

  • Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R, Falzano L, Donelli G (2003) Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int J Food Microbiol 89:31–39

    PubMed  CAS  Google Scholar 

  • Baffone W, Casaroli A, Citterio B, Pierfelici L, Campana R, Vittoria E, Guaglianone E, Donelli G (2006) Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. Int J Food Microbiol 107:83–91

    PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    PubMed  CAS  Google Scholar 

  • Balke VL, Gralla JD (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169:4499–4506

    PubMed  CAS  Google Scholar 

  • Ball AP, Bartlett JG, Craig WA, Drusano GL, Felmingham D, Garau JA, Klugman KP, Low DE, Mandell LA, Rubinstein E, Tillotson GS (2004) Future trends in antimicrobial chemotherapy: expert opinion on the 43rd ICAAC. J Chemother 16:419–436

    PubMed  CAS  Google Scholar 

  • Barcina I, Gonzalez J, Iriberri J, Egea L (1989) Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water. Appl Environ Microbiol 55:6–251

    Google Scholar 

  • Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, Sifri CD (2007) Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 3:e57

    PubMed  Google Scholar 

  • Belley A, Neesham-Grenon E, McKay G, Arhin FF, Harris R, Beveridge T, Parr TR Jr, Moeck G (2009) Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 53:918–925

    PubMed  CAS  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet II:497–500

    Google Scholar 

  • Bloom BR, McKinney JD (1999) The death and resurrection of tuberculosis. Nat Med 5:872–874

    PubMed  CAS  Google Scholar 

  • Cappelier JM, Besnard V, Roche S, Garrec N, Zundel E, Velge P, Federighi M (2005) Avirulence of viable but non-culturable Listeria monocytogenes cells demonstrated by in vitro and in vivo models. Vet Res 36:589–599

    PubMed  Google Scholar 

  • Cappelier JM, Besnard V, Roche SM, Velge P, Federighi M (2007) Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Vet Res 38:573–583

    PubMed  CAS  Google Scholar 

  • Chaiyanan S, Grim C, Maugel T, Huq A, Colwell RR (2007) Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environ Microbiol 9:393–402

    PubMed  Google Scholar 

  • Chaussee MA, Dmitriev AV, Callegari EA, Chaussee MS (2008) Growth phase-associated changes in the transcriptome and proteome of Streptococcus pyogenes. Arch Microbiol 189:27–41

    PubMed  CAS  Google Scholar 

  • Coates AR, Hu Y (2006) New strategies for antibacterial drug design: targeting non-multiplying latent bacteria. Drugs R&D 7:133–151

    CAS  Google Scholar 

  • Coates AR, Hu Y (2008) Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol Sci 29:143–150

    PubMed  CAS  Google Scholar 

  • Coates H, Thornton R, Langlands J, Filion P, Keil AD, Vijayasekaran S, Richmond P (2008) The role of chronic infection in children with otitis media with effusion: evidence for intracellular persistence of bacteria. Otolaryngol Head Neck Surg 138:778–781

    PubMed  Google Scholar 

  • Colmegna I, Cuchacovich R, Espinoza LR (2004) HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev 17:348–369

    PubMed  CAS  Google Scholar 

  • Colwell RR, Brayton BR, Grimes DJ, Roszak DB, Hug SA, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implication for release of genetically engineered microorganisms. BioTechnology 3:817–820

    Google Scholar 

  • Cornet I, Van Derlinden E, Cappuyns AM, Van Impe JF (2010) Heat stress adaptation of Escherichia coli under dynamic conditions: effect of inoculum size. Lett Appl Microbiol 51:450–455

    PubMed  CAS  Google Scholar 

  • Costa K, Bacher G, Allmaier G, Dominguez-Bello MG, Engstrand L, Falk P, de Pedro MA, Garcia-del Portillo F (1999) The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wall. J Bacteriol 181:3710–3715

    PubMed  CAS  Google Scholar 

  • Cronan JE Jr (1968) Phospholipid alterations during growth of Escherichia coli. J Bacteriol 95:2054–2061

    PubMed  CAS  Google Scholar 

  • Dannebery AM, Rook GAW (1994) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. America Society for Microbiology press, Washington DC, pp 459–501

    Google Scholar 

  • Darcan C, Ozkanca R, Idil O, Flint KP (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol J Microbiol 58:307–317

    PubMed  CAS  Google Scholar 

  • Darouiche RO, Mansouri MD (2005) Dalbavancin compared with vancomycin for prevention of Staphylococcus aureus colonization of devices in vivo. J Infect 50:206–209

    PubMed  CAS  Google Scholar 

  • Davis MJ, Coote PJ, O'Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142(10):2975–2982

    PubMed  CAS  Google Scholar 

  • de Beer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53:151–158

    PubMed  Google Scholar 

  • De Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM, Beullens S, Cornelis P, Michiels J (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73–79

    PubMed  Google Scholar 

  • Dineeen P, Homan WP, Grafe WR (1976) Tuberculous peritonitis: 43 years' expereince in diagnosis and treatment. Ann Surg 184:717–722

    PubMed  CAS  Google Scholar 

  • Dong T, Schellhorn HE (2009) Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 10:349

    PubMed  Google Scholar 

  • Dorr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760

    PubMed  Google Scholar 

  • Eisenstark A, Miller C, Jones J, Leven S (1992) Escherichia coli genes involved in cell survival during dormancy: role of oxidative stress. Biochem Biophys Res Commun 188:1054–1059

    PubMed  CAS  Google Scholar 

  • El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K (2008) Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 178:513–519

    PubMed  Google Scholar 

  • Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM (2010) Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother 54:3708–3713

    PubMed  CAS  Google Scholar 

  • Fischer-Le Saux M, Hervio-Heath D, Loaec S, Colwell RR, Pommepuy M (2002) Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl Environ Microbiol 68:5641–5646

    PubMed  CAS  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    PubMed  CAS  Google Scholar 

  • Gander S, Kinnaird A, Finch R (2005) Telavancin: in vitro activity against staphylococci in a biofilm model. J Antimicrob Chemother 56:337–343

    PubMed  CAS  Google Scholar 

  • Gootz TD (2010) The global problem of antibiotic resistance. Crit Rev Immunol 30:79–93

    PubMed  CAS  Google Scholar 

  • Groat RG, Schultz JE, Zychlinsky E, Bockman A, Matin A (1986) Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol 168:486–493

    PubMed  CAS  Google Scholar 

  • Grosset J (1978) The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc 53:5–12

    PubMed  CAS  Google Scholar 

  • Gunther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hansch GM (2009) Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol 46:1805–1813

    PubMed  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924

    PubMed  CAS  Google Scholar 

  • Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE Jr, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    PubMed  CAS  Google Scholar 

  • Hu Y, Coates AR (2005) Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett 243:117–124

    PubMed  CAS  Google Scholar 

  • Hu YM, Butcher PD, Sole K, Mitchison DA, Coates AR (1998) Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett 158:139–145

    PubMed  CAS  Google Scholar 

  • Hu Y, Mangan JA, Dhillon J, Sole KM, Mitchison DA, Butcher PD, Coates AR (2000) Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol 182:6358–6365

    PubMed  CAS  Google Scholar 

  • Hu Y, Coates AR, Mitchison DA (2003) Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:653–657

    PubMed  CAS  Google Scholar 

  • Hu Y, Coates AR, Mitchison DA (2006a) Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 10:317–322

    PubMed  CAS  Google Scholar 

  • Hu Y, Movahedzadeh F, Stoker NG, Coates AR (2006b) Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74:861–868

    PubMed  CAS  Google Scholar 

  • Hu Y, Shamaei-Tousi A, Liu Y, Coates A (2010) A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One 5:e11818

    PubMed  Google Scholar 

  • Hurdle JG, O'Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75

    PubMed  CAS  Google Scholar 

  • Jackson DN, Davis B, Tirado SM, Duggal M, van Frankenhuyzen JK, Deaville D, Wijesinghe MA, Tessaro M, Trevors JT (2009) Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie Van Leeuwenhoek 96:377–394

    PubMed  Google Scholar 

  • Jayaraman R (2008) Bacterial persistence: some new insights into an old phenomenon. J Biosci 33:795–805

    PubMed  CAS  Google Scholar 

  • Jenkins DE, Schultz JE, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914

    PubMed  CAS  Google Scholar 

  • Jenkins DE, Chaisson SA, Matin A (1990) Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol 172:2779–2781

    PubMed  CAS  Google Scholar 

  • Kaiser D (1986) Control of multicellular development: Dictyostelium and Myxococcus. Annu Rev Genet 20:539–566

    PubMed  CAS  Google Scholar 

  • Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196

    PubMed  CAS  Google Scholar 

  • Kaprelyants AS, Gottschal JC, Kell DB (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 10:271–285

    PubMed  CAS  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004a) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    PubMed  CAS  Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004b) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    PubMed  CAS  Google Scholar 

  • Klancnik A, Guzej B, Jamnik P, Vuckovic D, Abram M, Mozina SS (2009) Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res Microbiol 160:345–352

    PubMed  CAS  Google Scholar 

  • Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874

    PubMed  CAS  Google Scholar 

  • Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    PubMed  CAS  Google Scholar 

  • Kyd JM, McGrath J, Krishnamurthy A (2011) Mechanisms of bacterial resistance to antibiotics in infections of COPD patients. Curr Drug Targets 12(4):521–530

    PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59

    PubMed  CAS  Google Scholar 

  • Lee K, Veeranagouda Y (2009) Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ Microbiol 11:1117–1125

    PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    PubMed  CAS  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    PubMed  CAS  Google Scholar 

  • Lindback T, Rottenberg ME, Roche SM, Rorvik LM (2010) The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 41:8

    PubMed  Google Scholar 

  • Lleo MM, Bonato B, Tafi MC, Signoretto C, Boaretti M, Canepari P (2001) Resuscitation rate in different enterococcal species in the viable but non-culturable state. J Appl Microbiol 91:1095–1102

    PubMed  CAS  Google Scholar 

  • Lleo MM, Benedetti D, Tafi MC, Signoretto C, Canepari P (2007) Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environ Microbiol 9:2313–2320

    PubMed  Google Scholar 

  • Losick R, Youngman P, Piggot PJ (1986) Genetics of endospore formation in Bacillus subtilis. Annu Rev Genet 20:625–669

    PubMed  CAS  Google Scholar 

  • Lunde CS, Hartouni SR, Janc JW, Mammen M, Humphrey PP, Benton BM (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53:3375–3383

    PubMed  CAS  Google Scholar 

  • Martinez-Rodriguez A, Mackey BM (2005) Physiological changes in Campylobacter jejuni on entry into stationary phase. Int J Food Microbiol 101:1–8

    PubMed  CAS  Google Scholar 

  • Mascio CT, Alder JD, Silverman JA (2007) Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51:4255–4260

    PubMed  CAS  Google Scholar 

  • Masmoudi S, Denis M, Maalej S (2010) Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. Mar Pollut Bull 60:2209–2214

    PubMed  CAS  Google Scholar 

  • McCune RM Jr, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–762

    PubMed  CAS  Google Scholar 

  • McCune RM Jr, McDermott W, Tompsett R (1956) The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802

    PubMed  CAS  Google Scholar 

  • McCune RM, Feldmann FM, Lambert HP, McDermott W (1966a) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123:445–468

    PubMed  CAS  Google Scholar 

  • McCune RM, Feldmann FM, McDermott W (1966b) Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J Exp Med 123:469–486

    PubMed  CAS  Google Scholar 

  • McLeod GI, Spector MP (1996) Starvation- and Stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (sigma(S)) independent and occurs through both phoP-dependent and -independent pathways. J Bacteriol 178:3683–3688

    PubMed  CAS  Google Scholar 

  • Mitchison DA (1979) Basic mechanisms of chemotherapy. Chest 76:771–781

    PubMed  CAS  Google Scholar 

  • Mitchison DA (2004) Antimicrobial therapy of tuberculosis: justification for currently recommended treatment regimens. Semin Respir Crit Care Med 25:307–315

    PubMed  Google Scholar 

  • Mitchison DA, Fourie PB (2010) The near future: improving the activity of rifamycins and pyrazinamide. Tuberculosis (Edinb) 90:177–181

    CAS  Google Scholar 

  • Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K (2009) Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2:101–111

    PubMed  Google Scholar 

  • Moore JE, Nagano Y, Millar BC, McCalmont M, Elborn JS, Rendall J, Pattison S, Dooley JS, Goldsmith CE (2007) Environmental persistence of Pseudomonas aeruginosa and Burkholderia multivorans in sea water: preliminary evidence of a viable but non-culturable state. Br J Biomed Sci 64:129–131

    PubMed  CAS  Google Scholar 

  • Morita RY (1988) Bioavailability of energy and its relationship to growth and starvation survival in nature. Can J Microbiol 34:436–441

    CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci USA 95:8916–8921

    PubMed  CAS  Google Scholar 

  • Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579

    PubMed  CAS  Google Scholar 

  • Nannini EC, Stryjewski ME, Corey GR (2010) Telavancin's interactions with the bacterial cell membrane. Future Microbiol 5:355–358

    PubMed  CAS  Google Scholar 

  • Navarro Llorens JM, Tormo A, Martinez-Garcia E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495

    PubMed  Google Scholar 

  • Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173:5054–5059

    PubMed  CAS  Google Scholar 

  • Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133:203–208

    PubMed  CAS  Google Scholar 

  • Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W, Chopra I (2009) XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother 64:735–740

    PubMed  CAS  Google Scholar 

  • Ooi N, Miller K, Randall C, Rhys-Williams W, Love W, Chopra I (2010) XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. J Antimicrob Chemother 65:72–78

    PubMed  CAS  Google Scholar 

  • O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    PubMed  Google Scholar 

  • Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71:1134–1140

    PubMed  CAS  Google Scholar 

  • Pechere JC, Hughes D, Kardas P, Cornaglia G (2007) Non-compliance with antibiotic therapy for acute community infections: a global survey. Int J Antimicrob Agents 29:245–253

    PubMed  CAS  Google Scholar 

  • Pommepuy M, Butin M, Derrien A, Gourmelon M, Colwell RR, Cormier M (1996) Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl Environ Microbiol 62:4621–4626

    PubMed  CAS  Google Scholar 

  • Proctor RA, Kahl B, von Eiff C, Vaudaux PE, Lew DP, Peters G (1998) Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27(Suppl 1):S68–S74

    PubMed  Google Scholar 

  • Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    PubMed  CAS  Google Scholar 

  • Pruzzo C, Tarsi R, Lleo MM, Signoretto C, Zampini M, Colwell RR, Canepari P (2002) In vitro adhesion to human cells by viable but nonculturable Enterococcus faecalis. Curr Microbiol 45:105–110

    PubMed  CAS  Google Scholar 

  • Pruzzo C, Tarsi R, Lleo MM, Signoretto C, Zampini M, Pane L, Colwell RR, Canepari P (2003) Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. Environ Microbiol 5:850–858

    PubMed  CAS  Google Scholar 

  • Renslow RS, Majors PD, McLean JS, Fredrickson JK, Ahmed B, Beyenal H (2010) In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnol Bioeng 106:928–937

    PubMed  CAS  Google Scholar 

  • Rihl M, Klos A, Kohler L, Kuipers JG (2006) Infection and musculoskeletal conditions: reactive arthritis. Best Pract Res Clin Rheumatol 20:1119–1137

    PubMed  Google Scholar 

  • Rivers B, Steck TR (2001) Viable but nonculturable uropathogenic bacteria are present in the mouse urinary tract following urinary tract infection and antibiotic therapy. Urol Res 29:60–66

    PubMed  CAS  Google Scholar 

  • Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895

    PubMed  CAS  Google Scholar 

  • Roostalu J, Joers A, Luidalepp H, Kaldalu N, Tenson T (2008) Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68

    PubMed  Google Scholar 

  • Roszak DB, Colwell RR (1987) Metabolic activity of bacterial cells enumerated by direct viable count. Appl Environ Microbiol 53:2889–2983

    PubMed  CAS  Google Scholar 

  • Roszak DB, Grimes DJ, Colwell RR (1984) Viable but nonculturable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338

    PubMed  CAS  Google Scholar 

  • Saito N, Konishi K, Sato F, Kato M, Takeda H, Sugiyama T, Asaka M (2003) Plural transformation-processes from spiral to coccoid Helicobacter pylori and its viability. J Infect 46:49–55

    PubMed  CAS  Google Scholar 

  • Seguin MA, Vaden SL, Altier C, Stone E, Levine JF (2003) Persistent urinary tract infections and reinfections in 100 dogs (1989–1999). J Vet Intern Med 17:622–631

    PubMed  Google Scholar 

  • Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    PubMed  Google Scholar 

  • Siegele DA, Kolter R (1992) Life after log. J Bacteriol 174:345–348

    PubMed  CAS  Google Scholar 

  • Siegele DA, Kolter R (1993) Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation. Genes Dev 7:2629–2640

    PubMed  CAS  Google Scholar 

  • Signoretto C, Lleo MM, Tafi MC, Canepari P (2000) Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol 66:1953–1959

    PubMed  CAS  Google Scholar 

  • Signoretto C, Lleo MM, Canepari P (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 44:125–131

    PubMed  CAS  Google Scholar 

  • Signoretto C, Burlacchini G, Lleo MM, Pruzzo C, Zampini M, Pane L, Franzini G, Canepari P (2004) Adhesion of Enterococcus faecalis in the nonculturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater. Appl Environ Microbiol 70:6892–6896

    PubMed  CAS  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544

    PubMed  CAS  Google Scholar 

  • Simmons WL, Dybvig K (2007) Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infect Immun 75:3696–3699

    PubMed  CAS  Google Scholar 

  • Singh R, Ray P, Das A, Sharma M (2009) Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58:1067–1073

    PubMed  CAS  Google Scholar 

  • Singh R, Ray P, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958

    PubMed  CAS  Google Scholar 

  • Smith AW (1995) Stationary phase induction in Escherichia coli – new targets for antimicrobial therapy? J Antimicrob Chemother 35:359–361

    PubMed  CAS  Google Scholar 

  • Soares NC, Cabral MP, Gayoso C, Mallo S, Rodriguez-Velo P, Fernandez-Moreira E, Bou G (2010) Associating growth-phase-related changes in the proteome of Acinetobacter baumannii with increased resistance to oxidative stress. J Proteome Res 9:1951–1964

    PubMed  CAS  Google Scholar 

  • Spector MP, Cubitt CL (1992) Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation-survival. Mol Microbiol 6:1467–1476

    PubMed  CAS  Google Scholar 

  • Spector MP, Park YK, Tirgari S, Gonzalez T, Foster JW (1988) Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using Mu d-directed lacZ operon fusions. J Bacteriol 170:345–351

    PubMed  CAS  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    PubMed  CAS  Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140(3):569–576

    PubMed  CAS  Google Scholar 

  • Stewart JN, Rivera HN, Karls R, Quinn FD, Roman J, Rivera-Marrero CA (2006) Increased pathology in lungs of mice after infection with an alpha-crystallin mutant of Mycobacterium tuberculosis: changes in cathepsin proteases and certain cytokines. Microbiology 152:233–244

    PubMed  CAS  Google Scholar 

  • Torrella F, Morita RY (1981) Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol 41:518–527

    PubMed  CAS  Google Scholar 

  • Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183

    PubMed  Google Scholar 

  • Tuomanen E, Tomasz A (1990) Mechanism of phenotypic tolerance of nongrowing pneumococci to beta-lactam antibiotics. Scand J Infect Dis Suppl 74:102–112

    PubMed  CAS  Google Scholar 

  • Turner K, Porter J, Pickup R, Edwards C (2000) Changes in viability and macromolecular content of long-term batch cultures of Salmonella typhimurium measured by flow cytometry. J Appl Microbiol 89:90–99

    PubMed  CAS  Google Scholar 

  • Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29:124–134

    PubMed  Google Scholar 

  • Vashishtha VM (2010) Growing antibiotics resistance and the need for new antibiotics. Indian Pediatr 47:505–506

    PubMed  Google Scholar 

  • Velazquez M, Feirtag JM (1999) Helicobacter pylori: characteristics, pathogenicity, detection methods and mode of transmission implicating foods and water. Int J Food Microbiol 53:95–104

    PubMed  CAS  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    PubMed  CAS  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    PubMed  CAS  Google Scholar 

  • Ward WO, Swartz CD, Hanley NM, DeMarini DM (2010) Transcriptional characterization of Salmonella TA100 in log and stationary phase: influence of growth phase on mutagenicity of MX. Mutat Res 692:19–25

    PubMed  CAS  Google Scholar 

  • Wayne LG (1976) Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am Rev Respir Dis 114:807–811

    PubMed  CAS  Google Scholar 

  • Wayne LG (1977) Synchronized replication of Mycobacterium tuberculosis. Infect Immun 17:528–530

    PubMed  CAS  Google Scholar 

  • Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914

    PubMed  CAS  Google Scholar 

  • Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR (2005) Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 49:1483–1494

    PubMed  CAS  Google Scholar 

  • Wood AJ, Douglas RG (2010) Pathogenesis and treatment of chronic rhinosinusitis. Postgrad Med J 86:359–364

    PubMed  CAS  Google Scholar 

  • Wortinger MA, Quardokus EM, Brun YV (1998) Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Mol Microbiol 29:963–973

    PubMed  CAS  Google Scholar 

  • Yourassowsky E, Van Der Linden MP, Lismont MJ (1979) Growth curves, microscopic morphology, and subcultures of beta-lactamase-positive and -negative Haemophilus influenzae under the influence of ampicillin and cefamandole. Antimicrob Agents Chemother 15:325–331

    PubMed  CAS  Google Scholar 

  • Zech H, Thole S, Schreiber K, Kalhofer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R (2009) Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 9:3677–3697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, Y., Coates, A. (2012). Nonmultiplying Bacteria are Profoundly Tolerant to Antibiotics. In: Coates, A. (eds) Antibiotic Resistance. Handbook of Experimental Pharmacology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28951-4_7

Download citation

Publish with us

Policies and ethics