Skip to main content

The Origins of Antibiotic Resistance

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 211))

Abstract

Antibiotics remain one of our most important pharmacological tools for the control of infectious disease. However, unlike most other drugs, the use of antibiotics selects for resistant organisms and erodes their clinical utility. Resistance can emerge within populations of bacteria by mutation and be retained by subsequent selection or by the acquisition of resistance elements laterally from other organisms. The source of these resistance genes is only now being understood. The evidence supports a large bacterial resistome—the collection of all resistance genes and their precursors in both pathogenic and nonpathogenic bacteria. These genes have arisen by various means including self-protection in the case of antibiotic producers, transport of small molecules for various reasons including nutrition and detoxification of noxious chemicals, and to accomplish other goals, such as metabolism, and demonstrate serendipitous selectivity for antibiotics. Regardless of their origins, resistance genes can rapidly move through bacterial populations and emerge in pathogenic bacteria. Understanding the processes that contribute to the evolution and selection of resistance is essential to mange current stocks of antibiotics and develop new ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  • Allen HK, Moe LA et al (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3(2):243–51

    Article  PubMed  CAS  Google Scholar 

  • Allwood AC, Walter MR et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441(7094):714–8

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Ortega C, Wiegand I et al (2010) Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics. Antimicrob Agents Chemother 54(10):4159–67

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9(5):461–5

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–71

    PubMed  CAS  Google Scholar 

  • Baba T, Ara T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008

    Article  PubMed  Google Scholar 

  • Bailey AM, Ivens A et al (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 192(6):1607–16

    Article  PubMed  CAS  Google Scholar 

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411

    Article  PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Andersson DI et al (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104(43):17004–9

    Article  PubMed  CAS  Google Scholar 

  • Boucher HW, Talbot GH et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    Article  PubMed  Google Scholar 

  • Breidenstein EB, Khaira BK et al (2008) Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother 52(12):4486–91

    Article  PubMed  CAS  Google Scholar 

  • Bugg TDH, Wright GD et al (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415

    Article  PubMed  CAS  Google Scholar 

  • Canton R, Coque TM (2006) The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9(5):466–75

    Article  PubMed  CAS  Google Scholar 

  • Cirz RT, O’Neill BM et al (2006) Defining the Pseudomonas aeruginosa SOS Response and Its Role in the Global Response to the Antibiotic Ciprofloxacin. J Bacteriol 188(20):7101–10

    Article  PubMed  CAS  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–34

    Article  PubMed  CAS  Google Scholar 

  • Croucher NJ, Walker D et al (2009) Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol 191(5):1480–9

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–33

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe E, Bate N et al (2001) The tylosin-biosynthetic genes of Streptomyces fradiae. Antonie Van Leeuwenhoek 79(3–4):229–34

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, McKay GA et al (1997) Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem 272:24755–24758

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, McKay GA et al (1998) Aminoglycoside phosphotransferases required for antibiotic resistance are also Serine protein kinases. Chem Biol 6:11–18

    Article  Google Scholar 

  • Dantas G, Sommer MO et al (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–3

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1995) Vicious circles: looking back on resistance plasmids. Genetics 139(4):1465–8

    PubMed  CAS  Google Scholar 

  • D’Costa VM, McGrann KM et al (2006) Sampling the antibiotic resistome. Science 311(5759):374–7

    Article  PubMed  Google Scholar 

  • D’Costa VM, Griffiths E et al (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10(5):481–9

    Article  PubMed  Google Scholar 

  • De Pascale G, Wright GD (2010) Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. Chembiochem 11(10):1325–34

    Article  PubMed  Google Scholar 

  • Decousser JW, Poirel L et al (2001) Characterization of a chromosomally encoded extended-spectrum class A beta-lactamase from Kluyvera cryocrescens. Antimicrob Agents Chemother 45(12):3595–8

    Article  PubMed  CAS  Google Scholar 

  • Donato JJ, Moe LA et al (2010) Metagenomics reveals antibiotic resistance genes encoding predicted bifunctional proteins in apple orchard soil. Appl Environ Microbiol 76:4396–4401

    Article  PubMed  CAS  Google Scholar 

  • Dwyer DJ, Kohanski MA et al (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3:91

    Article  PubMed  Google Scholar 

  • Fajardo A, Martinez-Martin N et al (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3(2):e1619

    Article  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325(5944):1089–93

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1945) Penicillin. Nobel Prize Lecture http://nobelprize.org/nobel_prizes/medicine/laureates/1945/fleming-lecture.pdf

  • Folster JP, Johnson PJ et al (2009) MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol 191(1):287–97

    Article  PubMed  CAS  Google Scholar 

  • Fong DH, Lemke CT et al (2010) Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pheumophila. J Biol Chem 285(13):9545–55

    Article  PubMed  CAS  Google Scholar 

  • Freitas AR, Tedim AP et al (2010) Global spread of the hyl(Efm) colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob Agents Chemother 54(6):2660–5

    Article  PubMed  CAS  Google Scholar 

  • Guardabassi L, Agerso Y (2006) Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities. FEMS Microbiol Lett 259(2):221–5

    Article  PubMed  CAS  Google Scholar 

  • Guardabassi L, Perichon B et al (2005) Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother 49(10):4227–33

    Article  PubMed  CAS  Google Scholar 

  • Gwynn MN, Portnoy A et al (2010) Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 1213:5–19

    Article  PubMed  Google Scholar 

  • Hon WC, McKay GA et al (1997) Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89(6):887–95

    Article  PubMed  CAS  Google Scholar 

  • Hong HJ, Hutchings MI et al (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52(4):1107–21

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2(1):38–55

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC (2001) Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 32(Suppl 1):S9–S15

    Article  PubMed  CAS  Google Scholar 

  • Humeniuk C, Arlet G et al (2002) Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46(9):3045–9

    Article  PubMed  CAS  Google Scholar 

  • Infectious Diseases Society of America (2010) The 10 × ‘20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50(8):1081–3

    Article  Google Scholar 

  • Karray F, Darbon E et al (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology 153(Pt 12):4111–22

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann BB, Hung DT (2010) The fast track to multidrug resistance. Mol Cell 37(3):297–8

    Article  PubMed  CAS  Google Scholar 

  • Kelly JA, Dideberg O et al (1986) On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231(4744):1429–31

    Article  PubMed  CAS  Google Scholar 

  • Kohanski MA, DePristo MA et al (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37(3):311–20

    Article  PubMed  CAS  Google Scholar 

  • Koteva K, Hong HJ et al (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6(5):327–9

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Anderson JM et al (2010) Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil using functional metagenomics. Appl Environ Microbiol 76:5321–5326

    Article  PubMed  CAS  Google Scholar 

  • Laponogov I, Pan XS et al (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 5(6):e11338

    Article  PubMed  Google Scholar 

  • Leclercq R, Derlot E et al (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319(3):157–61

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Tran L et al (2010) Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 54(4):1393–403

    Article  PubMed  CAS  Google Scholar 

  • Maravic G (2004) Macrolide resistance based on the Erm-mediated rRNA methylation. Curr Drug Targets Infect Disord 4(3):193–202

    Article  PubMed  CAS  Google Scholar 

  • Marshall CG, Lessard IA et al (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42(9):2215–20

    PubMed  CAS  Google Scholar 

  • Massova I, Mobashery S (1998) Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 42(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Maveyraud L, Mourey L et al (1998) Structural basis for the clinical longevity of carbapenem antibiotics in the face of challenge by the common A beta-lactamasees from the antibiotic-resistnat bacteria. J Am Chem Soc 120:9748–9752

    Article  CAS  Google Scholar 

  • Morar M, Wright GD (2010) The genomic enzymology of antibiotic resistance. Annu Rev Genet 44:25–51

    Article  PubMed  CAS  Google Scholar 

  • Morar M, Bhullar K et al (2009) Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure 17(12):1649–59

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar TA, Wright GD (2005) Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105(2):529–42

    Article  PubMed  CAS  Google Scholar 

  • Mwangi MM, Wu SW et al (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 104(22):9451–6

    Article  PubMed  CAS  Google Scholar 

  • Nurizzo D, Shewry SC et al (2003) The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J Mol Biol 327(2):491–506

    Article  PubMed  CAS  Google Scholar 

  • Oliynyk M, Samborskyy M et al (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25(4):447–453

    Article  PubMed  CAS  Google Scholar 

  • Olson AB, Silverman M et al (2005) Identification of a progenitor of the CTX-M-9 group of extended-spectrum beta-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob Agents Chemother 49(5):2112–5

    Article  PubMed  CAS  Google Scholar 

  • Peirano G, Pitout JD (2010) Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 35(4):316–21

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4(8):629–36

    Article  PubMed  CAS  Google Scholar 

  • Poirel L, Kampfer P et al (2002) Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 46(12):4038–40

    Article  PubMed  CAS  Google Scholar 

  • Pomposiello PJ, Demple B (2000) Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182(1):23–9

    Article  PubMed  CAS  Google Scholar 

  • Ricci V, Piddock LJ (2009) Ciprofloxacin selects for multidrug resistance in Salmonella enterica serovar Typhimurium mediated by at least two different pathways. J Antimicrob Chemother 63(5):909–16

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Goodman RM et al (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–9

    Article  PubMed  CAS  Google Scholar 

  • Robicsek A, Strahilevitz J et al (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12(1):83–8

    Article  PubMed  CAS  Google Scholar 

  • Roy PH (1999) Horizontal transfer of genes in bacteria. Microbiol Today 26:168–170

    Google Scholar 

  • Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7(8):578–88

    Article  PubMed  CAS  Google Scholar 

  • Shaw KJ, Miller N et al (2003) Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 5(2):105–22

    Article  PubMed  CAS  Google Scholar 

  • Sommer MO, Dantas G et al (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325(5944):1128–31

    Article  PubMed  CAS  Google Scholar 

  • Soo VW, Hanson-Manful P et al (2011) From the cover: artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 108(4):1484–9

    Article  PubMed  CAS  Google Scholar 

  • Spellberg B, Powers JH et al (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38(9):1279–86

    Article  PubMed  CAS  Google Scholar 

  • Stogios PJ, Shakya T et al (2011) Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme. J Biol Chem 286(3):1966–75

    Article  PubMed  CAS  Google Scholar 

  • Strahilevitz J, Jacoby GA et al (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22(4):664–89

    Article  PubMed  CAS  Google Scholar 

  • Toth M, Frase H et al (2010) Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2″-IVa. Protein Sci 19(8):1565–76

    Article  PubMed  CAS  Google Scholar 

  • Tu D, Blaha G et al (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121(2):257–70

    Article  PubMed  CAS  Google Scholar 

  • Vetting MW, Park CH et al (2008) Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant. Biochemistry 47(37):9825–35

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Fisher SL et al (1996) Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 3:21–28

    Article  PubMed  CAS  Google Scholar 

  • Ward SL, Hu Z et al (2004) Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae. Antimicrob Agents Chemother 48(12):4703–12

    Article  PubMed  CAS  Google Scholar 

  • Waters B, Davies J (1997) Amino acid variation in the GyrA subunit of bacteria potentially associated with natural resistance to fluoroquinolone antibiotics. Antimicrob Agents Chemother 41(12):2766–9

    PubMed  CAS  Google Scholar 

  • Wellman CH, Osterloff PL et al (2003) Fragments of the earliest land plants. Nature 425(6955):282–5

    Article  PubMed  CAS  Google Scholar 

  • White DG, Goldman JD et al (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 179(19):6122–6

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC et al (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–83

    Article  PubMed  CAS  Google Scholar 

  • Williams KJ, Bax RP (2009) Challenges in developing new antibacterial drugs. Curr Opin Investig Drugs 10(2):157–63

    PubMed  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–86

    Article  PubMed  CAS  Google Scholar 

  • Wright GD (2010) The antibiotic resistome. Expert Opin Drug Disc 5:779–788

    Article  CAS  Google Scholar 

  • Wu Z, Wright GD et al (1995) Overexpression, purification, and characterization of VanX, a D-D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 34(8):2455–63

    Article  PubMed  CAS  Google Scholar 

  • Young PG, Walanj R et al (2009) The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2″-phosphotransferase-IIa [APH(2″)-IIa] provide insights into substrate selectivity in the APH(2″) subfamily. J Bacteriol 191(13):4133–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the author’s lab on antibiotic resistance is supported by a Canada Research Chair, the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard D. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, G.D. (2012). The Origins of Antibiotic Resistance. In: Coates, A. (eds) Antibiotic Resistance. Handbook of Experimental Pharmacology, vol 211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28951-4_2

Download citation

Publish with us

Policies and ethics