Advertisement

CEP-Stable, Few-Cycle, kHz OPCPAs for Attosecond Science: Energy Scaling and Coherent Sub-Cycle Pulse Synthesis

  • Kyung-Han Hong
  • Shu-Wei Huang
  • Jeffrey Moses
  • Xing Fu
  • Giovanni Cirmi
  • Chien-Jen Lai
  • Siddharth Bhardwaj
  • Franz X. Kärtner
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

We report on the energy scaling and coherent waveform synthesis of a carrier-envelope phase (CEP)-stable, few-cycle, kHz-repetition-rate optical parametric chirped-pulse amplifiers (OPCPAs) for high-field physics applications. First, amplification of ultrabroadband \(2.1\mbox{ -}\mu \mathrm{m}\) pulses to 0.85 mJ is demonstrated using a novel high-energy, ps, cryogenic Yb:YAG pump laser. Pulse compression to 4.5 optical cycles has been achieved. Initial high-harmonic generation (HHG) experiments with Xe have shown a significant cutoff extension to \(>85\,\mathrm{eV}\). Second, we have coherently synthesized the \(2.1\mbox{ -}\mu \mathrm{m}\) pulse with a CEP-stable, few-cycle near-infrared OPCPA pulse seeded by the same laser oscillator and generated a \(15\mbox{ -}\mu \mathrm{J}\) sub-cycle waveform. Simulations confirm that this waveform is suitable for isolated attosecond pulse generation. The pulse synthesis method can be extended to a novel energy-scalable wavelength multiplexing scheme based on multi-color OPCPAs.

Keywords

Spectral Phase Difference Frequency Generation Optical Cycle Chirp Fiber Bragg Grating Difference Frequency Generation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Shan, Z. Chang, Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804(R) (2001)Google Scholar
  2. 2.
    A. Gordon, F.X. Kärtner, Scaling of keV HHG photon yield with drive wavelength. Opt. Express 13, 2941–2947 (2005)Google Scholar
  3. 3.
    M.C. Chen et al., Ultrafast soft x-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett. 105, 173901 (2010)Google Scholar
  4. 4.
    T. Popmintchev et al, CLEO/QELS 2011 (Baltimore, MD, May 1–6, 2011) PDPC12Google Scholar
  5. 5.
    K.-H. Hong et al., High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. Opt. Lett. 35, 1752–1754 (2010)Google Scholar
  6. 6.
    J. Moses et al, Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt. Lett. 34, 1639–1641 (2009)Google Scholar
  7. 7.
    K.-H. Hong et al., High-energy, phase-stable, ultrabroadband kHz OPCPA at 2. 1 μm pumped by a picosecond cryogenic Yb:YAG laser. Opt. Express 19, 15538–15548 (2011)Google Scholar
  8. 8.
    T. Popmintchev et al, Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Nat. Acad Sci USA 106, 10516 (2009)Google Scholar
  9. 9.
    S.-W. Huang et al., High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photon. 5, 475–479 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kyung-Han Hong
    • 1
  • Shu-Wei Huang
    • 2
  • Jeffrey Moses
    • 2
  • Xing Fu
    • 2
  • Giovanni Cirmi
    • 2
  • Chien-Jen Lai
    • 2
  • Siddharth Bhardwaj
    • 2
  • Franz X. Kärtner
    • 2
    • 3
  1. 1.Department of Electrical Engineering and Computer Science (EECS) and Research Laboratory of Electronics (RLE)Massachusetts Institute of Technology (MIT)CambridgeUSA
  2. 2.EECS and RLEMITCambridgeUSA
  3. 3.Center for Free-Electron Laser Science, DESY, and Department of PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations