Electron Correlation and Interference Effects in Strong-Field Processes

  • Markus C. Kohler
  • Carsten Müller
  • Christian Buth
  • Alexander B. Voitkiv
  • Karen Z. Hatsagortsyan
  • Joachim Ullrich
  • Thomas Pfeifer
  • Christoph H. Keitel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

Several correlation and interference effects in strong-field physics are investigated. We show that the interference of continuum wave packets can be the dominant mechanism of high-harmonic generation (HHG) in the over-the-barrier regime. Next, we combine HHG with resonant X-ray excitation to force the recolliding continuum electron to recombine with a core hole rather than the valence hole from that it was previously tunnel ionized. The scheme opens up perspectives for nonlinear xuv physics, attosecond X-ray pulses, and spectroscopy of core orbitals. Then, a method is proposed to generate attochirp-free harmonic pulses by engineering the appropriate electron wave packet. Finally, resonant photoionization mechanisms involving two atoms are discussed which can dominate over the direct single-atom ionization channel at interatomic distances in the nanometer range.

Keywords

Wave Packet Laser Field Attosecond Pulse Strong Laser Field Valence Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

C.B. and M.C.K. were supported by a Marie Curie International Reintegration Grant within the 7\(\mathrm{th}\) European Community Framework Program (call identifier: FP7-PEOPLE-2010-RG, proposal No. 266551). C.B.’s work was funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. T.P. acknowledges support by an MPRG grant of the Max-Planck Gesellschaft. This work was supported in part by the Extreme Matter Institute EMMI.

References

  1. 1.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993); K.J. Schafer et al., Phys. Rev. Lett. 70, 1599 (1993)Google Scholar
  2. 2.
    M.C. Kohler et. al., Phys. Rev. Lett 105, 203902 (2010)Google Scholar
  3. 3.
    A. Pukhov, S. Gordienko, T. Baeva, Phys. Rev. Lett. 91, 173002 (2003)Google Scholar
  4. 4.
    J. Itatani et al., Nature 432, 867 (2004)Google Scholar
  5. 5.
    M. Protopapas et al., Phys. Rev. A 53, R2933 (1996); M. Yu. Emelin et al., JETP 106, 203 (2008); D.B. Milošević, in NATO Science Series II: Mathematics, Physics and Chemistry, vol. 12, ed. by B. Piraux, K. Rzazewski (Kluwer, Dordrecht, 2001), pp. 229–238; D.B. Milošević, F. Ehlotzky, Adv. At. Mol. Opt. Phys. 49, 373 (2003)Google Scholar
  6. 6.
    D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396 (2006)Google Scholar
  7. 7.
    A. Gordon, F.X. Kärtner, Phys. Rev. Lett. 95, 223901 (2005)Google Scholar
  8. 8.
    M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994)Google Scholar
  9. 9.
    O. Latinne et al., Euro. Phys. Lett. 26, 333 (1994)Google Scholar
  10. 10.
    T. Popmintchev et al., Proc. Nat. Acad. Sci. USA 106, 10516 (2009)Google Scholar
  11. 11.
    T. Morishita et al., Phys. Rev. Lett. 100, 013903 (2008)Google Scholar
  12. 12.
    C. Buth et al., Opt. Lett 36, 3530 (2011)Google Scholar
  13. 13.
    C. Buth et al., (manuscript in preparation)Google Scholar
  14. 14.
    E. Goulielmakis et al., Science 320, 1614–1617 (2008)Google Scholar
  15. 15.
    F. Ferrari et al., Nat. Photon. 4, 875–879 (2010)Google Scholar
  16. 16.
    D.H. Ko et al., New J. Phys. 12, 063008 (2010)Google Scholar
  17. 17.
    M.-C. Chen et al., Phys. Rev. Lett. 105, 173901 (2010)Google Scholar
  18. 18.
    Y. Mairesse et al., Science 302, 1540–1543 (2003) and supplementary materialGoogle Scholar
  19. 19.
    S. Kazamias, Ph. Balcou, Phys. Rev. A 69, 063416 (2004)Google Scholar
  20. 20.
    K.T. Kim et al., Phys. Rev. A 69, 051805(R) (2004); R. López-Martens et al., Phys. Rev. Lett. 94, 033001 (2005); K.T. Kim et al., Phys. Rev. Lett. 99, 223904 (2007)Google Scholar
  21. 21.
    M.C. Kohler, C.H. Keitel, K.Z. Hatsagortsyan, Opt. Express 19, 4411 (2011)Google Scholar
  22. 22.
    K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003); K. J. Schafer et al., Phys. Rev. Lett. 92, 023003 (2004); M.B. Gaarde et al., Phys. Rev. A 72, 013411 (2005); M. Klaiber et al., Opt. Lett. 33, 411–413 (2008)Google Scholar
  23. 23.
    C. Müller, A.B. Voitkiv, Phys. Rev. Lett. 107, 013001 (2011)Google Scholar
  24. 24.
    V. Averbukh et al., J. Electron Spectrosc. Relat. Phenom. 183, 36–47 (2011); U. Hergenhahn, J. Electron Spectrosc. Relat. Phenom. 184, 78–90 (2011)Google Scholar
  25. 25.
    A. Kay et al., Science 281, 679 (1998)Google Scholar
  26. 26.
    B. Najjari, A.B. Voitkiv, C. Müller, Phys. Rev. Lett. 105, 153002 (2010); A.B. Voitkiv, B. Najjari, Phys. Rev. A 84, 013415 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus C. Kohler
    • 1
  • Carsten Müller
    • 1
  • Christian Buth
    • 1
    • 2
  • Alexander B. Voitkiv
    • 1
  • Karen Z. Hatsagortsyan
    • 1
  • Joachim Ullrich
    • 1
    • 3
  • Thomas Pfeifer
    • 1
  • Christoph H. Keitel
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Argonne National LaboratoryArgonneUSA
  3. 3.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations