Advertisement

Controlling and Reading Interference Structures Created by Strong Field Ionizing Attosecond Electron Wave Packets

  • X. Xie
  • S. Roither
  • D. Kartashov
  • L. Zhang
  • E. Persson
  • S. Gräfe
  • M. Schöffler
  • J. Burgdörfer
  • A. Baltuška
  • M. Kitzler
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

We use cycle-sculpted two-color waveforms to drive electronic wavepackets generated by strong-field ionization from helium gas atoms and analyse their momentum spectra measured by electron-ion coincidence momentum spectroscopy. Varying the relative phase of the two colors allows to sculpt the ionizing field and hence to control the emission times and motion of the wavepackets on an attosecond timescale. We show that the measured electron momentum spectra contain interference patterns created by pairs of electron wavepackets that are released within a single laser-field-cycle. We experimentally distinguish these sub-cycle interference structures from above-threshold ionization (ATI) peaks and argue that they can be used to extract the sub-cycle phase-evolution of the laser-driven complex bound-state wavefunction.

Keywords

Interference Fringe Laser Field Momentum Spectrum Interference Structure Laser Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge funding by the Austrian Science Fund (FWF), Grant Numbers P21463-N22, P21141-N16, P23359-N16, SFB-016, V193-N16.

References

  1. 1.
    T. Remetter, P. Johnsson, J. Mauritsson, K. Varjú, Y. Ni, F. Lépine, E. Gustafsson, M. Kling, J. Khan, R. López-Martens, K.J. Schafer, M.J.J. Vrakking, A. LHuillier, Nat. Phys. 2(5), 323 (2006)Google Scholar
  2. 2.
    F. Quéré, J. Itatani, G. Yudin, P. Corkum, Phys. Rev. Lett. 90(7), 1 (2003)Google Scholar
  3. 3.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman, Phys. Rev. Lett. 42(17), 1127 (1979)Google Scholar
  4. 4.
    D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81(2), 021403 (2010)Google Scholar
  5. 5.
    R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.U. Kühnel, S. Tschuch, C.D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, M. Kling, Phys. Rev. Lett. 103(5), 053001 (2009)Google Scholar
  6. 6.
    R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330(2–3), 95 (2000)Google Scholar
  7. 7.
    R. Freeman, P. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. Geusic, Phys. Rev. Lett. 59(10), 1092 (1987)Google Scholar
  8. 8.
    M. Lewenstein, K. Kulander, K. Schafer, P. Bucksbaum, Phys. Rev. A 51(2), 1495 (1995)Google Scholar
  9. 9.
    D. Arbó, K. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 82(4), 043426 (2010)Google Scholar
  10. 10.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460(7258), 972 (2009)Google Scholar
  11. 11.
    E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Nature 466(7307), 739 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • X. Xie
    • 1
  • S. Roither
    • 1
  • D. Kartashov
    • 1
  • L. Zhang
    • 1
  • E. Persson
    • 2
  • S. Gräfe
    • 2
  • M. Schöffler
    • 1
  • J. Burgdörfer
    • 2
  • A. Baltuška
    • 1
  • M. Kitzler
    • 1
  1. 1.Photonics InstituteVienna University of TechnologyViennaAustria
  2. 2.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations