Advertisement

Attosecond Pump-Probe of Doubly Excited States of Helium through Two-Photon Interferometry

  • Johannes Feist
  • Stefan Nagele
  • Christopher Ticknor
  • Barry I. Schneider
  • Lee A. Collins
  • Joachim Burgdörfer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

We show that correlated dynamics in wave packets of doubly excited helium can be followed in real time by a pump-probe setup based on two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible non-coincident single electron spectra.

Keywords

Pump Pulse Probe Pulse Double Ionization Attosecond Pulse Doubly Excited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge support by the FWF-Austria, grants No. SFB041 and P21141-N16 (S.N. and J.B.) and by the NSF through a grant to ITAMP (J.F.). C.T. and L.A.C. acknowledge support from LANL, which is operated by LANS, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC52-06NA25396. The computations used the Vienna Scientific Cluster, Institutional Computing resources at Los Alamos National Laboratory, and NSF TeraGrid resources provided by NICS and TACC under grant TG-PHY090031.

References

  1. 1.
    E. Goulielmakis et al., Science 320, 1614 (2008). http://dx.doi.org/10.1126/science.1157846
  2. 2.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009). http://dx.doi.org/10.1103/RevModPhys.81.163
  3. 3.
    E.J. Takahashi et al., Phys. Rev. Lett. 104, 233901 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.233901 Google Scholar
  4. 4.
    S. Gilbertson et al., Phys. Rev. A 81, 043810 (2010). http://dx.doi.org/10.1103/PhysRevA.81.043810
  5. 5.
    P. Tzallas et al., Nature Physics 7, 781 (2011). http://dx.doi.org/10.1038/nphys2033
  6. 6.
    S.X. Hu, L.A. Collins, Phys. Rev. Lett. 96, 073004 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.073004 Google Scholar
  7. 7.
    T. Morishita, S. Watanabe, C.D. Lin, Phys. Rev. Lett. 98, 083003 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.083003 Google Scholar
  8. 8.
    J. Feist et al., Phys. Rev. Lett. 107, 093005 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.093005 Google Scholar
  9. 9.
    R. Pazourek et al., Phys. Rev. A 83, 053418 (2011). http://dx.doi.org/10.1103/PhysRevA.83.053418
  10. 10.
    J. Mauritsson et al., Phys. Rev. Lett. 105, 053001 (2010). http://dx.doi.org/10.1103/PhysRevLett.105.053001 Google Scholar
  11. 11.
    N.N. Choi et al., Phys. Rev. A 82, 013409 (2010). http://dx.doi.org/10.1103/PhysRevA.82.013409
  12. 12.
    C.W. McCurdy, M. Baertschy, T.N. Rescigno, J. Phys. B 37, R137 (2004). http://dx.doi.org/10.1088/0953-4075/37/17/R01
  13. 13.
    S.L. Carter, H.P. Kelly, Phys. Rev. A 24, 170 (1981). http://dx.doi.org/10.1103/PhysRevA.24.170

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Feist
    • 1
  • Stefan Nagele
    • 2
  • Christopher Ticknor
    • 3
  • Barry I. Schneider
    • 4
  • Lee A. Collins
    • 3
  • Joachim Burgdörfer
    • 2
  1. 1.ITAMP, Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria, EU
  3. 3.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Office of Cyberinfrastructure, National Science FoundationArlingtonUSA

Personalised recommendations