Advertisement

XUV Interferometry of Attosecond Pulses

  • Yasuo Nabekawa
  • Eiji J. Takahashi
  • Yusuke Furukawa
  • Tomoya Okino
  • Kaoru Yamanouchi
  • Katsumi Midorikawa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

We demonstrate the interferometry and Fourier analysis of the attosecond pulse train (APT), which is formed with the Fourier synthesis of multiple high-order harmonic fields in the XUV wavelength region. The ion yield originating from nonlinear interaction of the APT with the nitrogen molecule exhibits the interference fringes of the XUV harmonic fields on the pulse envelope of the APT in the interferometric autocorrelation (IAC) measurement. We have resolved the kinetic energy spectrum in three distinct regions in accordance with the characteristic of the fringe frequency, although the detailed ionization/dissossiation process is not clear. Another example of the IAC trace obtained from the deuterium ion dose not show the pulse envelope of the APT, while we can clearly observe the interference fringes of low order harmonic field, instead. We have determined the distinct sequential processes of ionization followed by dissociation with Fourier analysis of these fringes. The available wavelength resolution of the measurement device for the IAC, which we call “attocorrelator,” has been also demonstrated with the linear interferometry.

Keywords

Interference Fringe Nitrogen Molecule Attosecond Pulse Pulse Envelope Kinetic Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)Google Scholar
  2. 2.
    P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)Google Scholar
  3. 3.
    Y. Nabekawa, H. Hasegawa, E.J. Takahashi, K. Midorikawa, Phys. Rev. Lett. 94, 043001 (2005)Google Scholar
  4. 4.
    N. Miyamoto, M. Kamei, D. Yoshitomi, T. Kanai, T. Sekikawa, T. Nakajima, S. Watanabe, Phys. Rev. Lett. 93, 083903 (2004)Google Scholar
  5. 5.
    Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H. Hasegawa, K. Yamanouchi, K. Midorikawa, Phys. Rev. Lett. 96, 083901 (2006)Google Scholar
  6. 6.
    T. Okino, K. Yamanouchi, T. Shimizu, K. Furusawa, H. Hasegawa, Y. Nabekawa, K. Midorikawa, Chem. Phys. Lett. 432, 68 (2006)Google Scholar
  7. 7.
    Y. Nabekawa, T. Shimizu, T. Okino, K. Furusawa, H. Hasegawa, K. Yamanouchi, K. Midorikawa, Phys. Rev. Lett. 97, 153904 (2006)Google Scholar
  8. 8.
    Y. Nabekawa, K. Midorikawa, New J. Phys. 10, 025034 (2008)Google Scholar
  9. 9.
    E.J. Takahashi, H. Hasegawa, Y. Nabekawa, K. Midorikawa, Opt. Lett. 29, 507 (2004)Google Scholar
  10. 10.
    Y. Furukawa, Y. Nabekawa, T. Okino, S. Saugout, K. Yamanouchi, K. Midorikawa, Phys. Rev. A 82, 013421 (2010)Google Scholar
  11. 11.
    Y. Nabekawa, T. Shimizu, Y. Furukawa, E.J. Takahashi, K. Midorikawa, Phys. Rev. Lett. 102, 213904 (2009)Google Scholar
  12. 12.
    N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.C. Rodier, L. Nahon, Nat. Phys. 5, 149 (2011)Google Scholar
  13. 13.
    Y. Nabekawa, A. Amani-Eilanlou, Y. Furukawa, K. Ishikawa, H. Takahashi, K. Midorikawa, Appl. Phys. B 101, 523 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yasuo Nabekawa
    • 1
  • Eiji J. Takahashi
    • 1
  • Yusuke Furukawa
    • 1
  • Tomoya Okino
    • 2
  • Kaoru Yamanouchi
    • 2
  • Katsumi Midorikawa
    • 1
  1. 1.RIKENWako-shiJapan
  2. 2.Department of Chemistry, School of Sciencethe University of TokyoTokyoJapan

Personalised recommendations