Formation of Attosecond XUV Pulses via Resonance with Hydrogen-Like Atoms Irradiated by Intense Laser Field

  • V. A. Polovinkin
  • Y. V. Radeonychev
  • Olga Kocharovskaya
  • M. Yu. Ryabikin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 125)

Abstract

We show the possibility to produce a short bunch of few nearly bandwidth-limited few-cycle attosecond pulses via the time-dependent resonant interaction of an incident radiation pulse with the bound states of hydrogenlike atoms. Time-dependence of the resonant interaction is based on time-dependent tunnel ionization from the excited states and temporal adiabatic Stark splitting of the excited energy levels, provided by far-off-resonant laser pulse whose intensity is much below the atomic ionization threshold. Without external synchronization of the spectral components it is possible to produce pulses of XUV radiation with duration up to 80 as at the carrier wavelength 13.5 nm in Li2 +-plasma.

Keywords

Attosecond Pulse Short Bunch External Synchronization Instantaneous Strength Peak Pulse Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by RFBR (Grants #09-02-01158, #10-02-01250) and NSF grant #0855688. V.A. Polovinkin acknowledges personal grant, given by foundation. Dynasty under the program for young scientists support.

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)Google Scholar
  2. 2.
    E. Gustafsson, T. Ruchon, M. Swoboda, T. Remetter, E. Pourtal, R. López-Martens, Ph. Balcou, A. L’Huillier, Opt. Lett. 32, 1353 (2007)Google Scholar
  3. 3.
    Y.V. Radeonychev, M.D. Tokman, A.G. Litvak, O. Kocharovskaya, Phys. Rev. Lett. 96, 093602 (2006)Google Scholar
  4. 4.
    Y.V. Radeonychev, V.A. Polovinkin, O. Kocharovskaya, Laser Phys. 19, 769 (2009)Google Scholar
  5. 5.
    Y.V. Radeonychev, V.A. Polovinkin, O. Kocharovskaya, Phys. Rev. Lett. 105, 183902 (2010)Google Scholar
  6. 6.
    Y.V. Radeonychev, V.A. Polovinkin, O. Kocharovskaya, Laser Phys. 21, 1243 (2011)Google Scholar
  7. 7.
    V.A. Polovinkin, Y.V. Radeonychev, O. Kocharovskaya, Opt. Lett. 36, 2296 (2011)Google Scholar
  8. 8.
    Y.V. Radeonychev, V.A. Polovinkin, O. Kocharovskaya, Laser Phys. issue 10, accepted (2012)Google Scholar
  9. 9.
    G. Newton, D.A. Andrews, P.J. Unsworth, Phil. Trans. R. Soc. London 290, 373 (1979)Google Scholar
  10. 10.
    R.F. Stebbings, F.B. Dunning, Rydberg States of Atoms and Molecules (Cambridge University Press, Cambridge, 1983)Google Scholar
  11. 11.
    E.V. Vanin, A.V. Kim, A.M. Sergeev, M.C. Downer, JEPT Lett. 58, 900 (1993)Google Scholar
  12. 12.
    C. Rajyaguru, T. Higashiguchi, M. Koga, K. Kawasaki, M. Hamada, N. Dojyo, W. Sasaki, S. Kubodera, Appl. Phys. B 80, 409 (2005)Google Scholar
  13. 13.
    M.A. Klosner, W.T. Silfvast, Appl. Opt. 39, 3678 (2000)Google Scholar
  14. 14.
    T. Harada, T. Hatano, M. Yamamoto, Proc., 8th International Conference on X-ray Microscopy, Conf. Proc. Series IPAP 7, 195 (2006) Tokyo, Japan: Institute of Pure and Applied PhysicsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. A. Polovinkin
    • 1
    • 2
  • Y. V. Radeonychev
    • 1
    • 2
  • Olga Kocharovskaya
    • 1
    • 2
  • M. Yu. Ryabikin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of ScienceNizhny NovgorodRussia
  2. 2.Department of Physics of Texas A&M UniversityCollege StationUSA

Personalised recommendations