Skip to main content

Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7208)

Abstract

Breast cancer is one of the most common tumors related to death in women in many countries. In this paper, a novel neural network classification model is developed. The proposed model uses floating centroids method and particle swarm optimization algorithm with inertia weight as optimizer to improve the performance of neural network classifier. Wisconsin breast cancer datasets in UCI Machine Learning Repository are tested with neural network classifier of the proposed method. Experimental results show that the developed model improves search convergence and performance. The accuracy of classification of benign and malignant tumors could be improved by the developed method compared with other classification techniques.

Keywords

  • Floating Centroids Method
  • PSO
  • Neural Network
  • Breast Cancer Classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28942-2_58
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28942-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hulka, B.S., Moorman, P.G.: Breast Cancer: Hormones and Other Risk Factors. Maturitas 38(1), 103–113 (2001)

    CrossRef  Google Scholar 

  2. Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    CrossRef  Google Scholar 

  3. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)

    CrossRef  Google Scholar 

  4. Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)

    CrossRef  MathSciNet  Google Scholar 

  5. Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)

    CrossRef  Google Scholar 

  6. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    CrossRef  Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  8. Platt, J., Cristianini, N., Shawe Taylor, J.: Large Margin DAGs for Multiclass Classification. In: Advances in Neural Information Processing Systems, pp. 547–553 (2000)

    Google Scholar 

  9. Lu, H., Rudy, S., Huan, L.: Effect data mining using neural networks. IEEE Transcation Knowledge Data Engineer. 8(6), 957–961 (1996)

    CrossRef  Google Scholar 

  10. Misraa, B.B., Dehurib, S., Dashc, P.K., Pandad, G.: A reduced and comprehensible polynomial neural network for classification. Pattern Recognition 29(12), 1705–1712 (2008)

    CrossRef  Google Scholar 

  11. Daqi, G., Yan, J.: Classification methodologies of multilayer perceptions with sigmoid activation functions. Pattern Recognition 38(10), 1469–1482 (2005)

    CrossRef  Google Scholar 

  12. Chen, Y., Abraham, A., Yang, B.: Feature selection and classification using flexible neural tree. Neurocomputing 70(1-3), 305–313 (2006)

    CrossRef  Google Scholar 

  13. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  14. Chua, Y.S.: Efficient computations for large least square support vector machine classifiers. Pattern Recognition 24(1-3), 75–80 (2003)

    CrossRef  MATH  Google Scholar 

  15. Koknar-Tezel, S., Latecki, L.J.: Improving SVM classification on imbalanced time series data sets with ghost points. Knowledge and Information Systems 28(1), 1–23 (2011)

    CrossRef  Google Scholar 

  16. Benjamin, X.W., Japkowicz, N.: Boosting support vector machines for imbalanced data sets. Knowledge and Information Systems 25(1), 1–20 (2011)

    Google Scholar 

  17. Qinlan, J.R.: Introduction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  18. Wang, L., Yang, B., Chen, Y., Abraham, A., Sun, H., Chen, Z., Wang, H.: Improvement of Neural Network Classifier using Floating Centroids. Knowledge and Information Systems (2011), doi: 10.1007/s10115-011-0410-8

    Google Scholar 

  19. Freund, Y.: Boosting a weak learning algorithm by majority. Information Computing 121(2), 256–285 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Applied Stat. 28(1), 100–108 (1979)

    CrossRef  MATH  Google Scholar 

  21. Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Proc. of the Congress on Evolutionary Computation, pp. 81–86 (2001)

    Google Scholar 

  22. Huang, C.-P., Xiong, W.-L., Xu, B.-G.: Influnce of Inertia Weight on Astringency of Particle Swarm Algorithm and Its Improvement. Computer Engineering 34(12), 31–33 (2008)

    Google Scholar 

  23. Yang, B., Wang, L., Chen, Z., Chen, Y., Sun, R.: A novel classification method using the combination of FDPS and flexible neural tree. Neurocomputing 73(4-6), 690–699 (2010)

    CrossRef  Google Scholar 

  24. Blake, C.L., Merz, C.J., Newman, D.J., et al.: UCI Repository of Machine Learning Databases (2002), http://www.ics.uci.edu/mlearn/MLRepository.html

  25. Chen, Y., Abraham, A.: Hybrid Neurocomputing for Detection of Breast Cancer. In: The Fourth IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST 2005), pp. 884–892 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Wang, L., Wang, X., Liu, K., Abraham, A. (2012). Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)