Hybrid Artificial Intelligence Approaches on Vehicle Routing Problem in Logistics Distribution

  • Dragan Simić
  • Svetlana Simić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7208)


Biological intelligence for modelling and optimization on vehicle routing problem of logistics distribution and supply chain management systems are presented in this paper. Logistics distribution is adaptive, dynamic, and open self-organizing system, which is maintained by flows of information, materials, goods, funds, and energy. The aim of this research is to summarize different individual bio-inspired methods, evolutionary computing, genetic algorithm, ant colony optimization, artificial immune systems, and to obtain power extension of these hybrid approaches. In general, these bio-inspired hybrid approaches are more competitive than the classical problem-solving methodology including improvement heuristics methods or individual bio-inspired methods and their solutions in logistics distribution and supply chain management applications.


Logistics distribution vehicle routing problem bio-inspired models genetic algorithms artificial immune systems hybrid artificial intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science 6(1), 80–91 (1959)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid Learning Machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  3. 3.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  4. 4.
    Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)CrossRefGoogle Scholar
  5. 5.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  6. 6.
    Simić, D., Simić, S.: A review: Approach of fuzzy models applications in logistics. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 717–726. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kudumovic, D., Mujevic, M., Sukic, C.: New trends and ideas in the application of multi-modal transportation systems. Technics Technologies Education Management 6(2), 241–246 (2011)Google Scholar
  8. 8.
    Huanglan, C.C.: The mode of vehicle routing problem and the of brain power heuristic algorithm. Computer Development and Application 16, 2–5 (2003)Google Scholar
  9. 9.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research 59, 345–358 (1992)MATHCrossRefGoogle Scholar
  10. 10.
    Rao, V.B.: Neural networks and fuzzy logic. M&T Books, IDG Books Worldwide (1995)Google Scholar
  11. 11.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The traveling salesman problem: A guided tour of combinatorial optimization. Wiley (1985)Google Scholar
  12. 12.
    Eielst, H.A., Laporte, G.: A historical perspective on arc routing. In: Dror, M. (ed.) Arc Routing: Theory, Solutions and Applications. Springer, Berlin (2000)Google Scholar
  13. 13.
    Lin, S.: Computer solutions of travelling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)MathSciNetMATHGoogle Scholar
  14. 14.
    Beyer, H.-G., Schwelef, H.-P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Homberger, J., Gehring, H.: Two evolutionary metaheuristics for the vehicle routingproblem with time windows. INFOR 37, 297–318 (1999)Google Scholar
  16. 16.
    Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)Google Scholar
  17. 17.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony cooperation agents. IEEE Transactions on Systems, Man and Cybernetics, Part 2 26(1), 1–13 (1996)Google Scholar
  18. 18.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computing 1(1), 53–66 (1997)CrossRefGoogle Scholar
  19. 19.
    Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation Computer System 16(8), 889–914 (2000)CrossRefGoogle Scholar
  20. 20.
    Gambardella, L.M., Taillard, E.D., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, London (1999)Google Scholar
  21. 21.
    Berger, J., Barkaoui, M., Braysys, O.: A route-direction hybrid genetic approach for vehicle routing problem with time windows. Information System and Operational Research 41, 179–194 (2003)Google Scholar
  22. 22.
    de Castro, L.N., Timmis, J.: Artificial immune systems: A new computational intelligence approach. Springer, London (2002)MATHGoogle Scholar
  23. 23.
    Keko, H., Skok, M., Skrelec, D.: Solving the distribution network routing problem with artificial immune systems. In: Proceedings of the IEEE Mediterranean Electrotechnical Conference, pp. 959–962 (2004)Google Scholar
  24. 24.
    Ma, J., Zou, H., Gao, L.-Q., Li, D.: Immune genetic algorithm for vehicle routing problem with time windows. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, pp. 3465–3469 (2006)Google Scholar
  25. 25.
    Corchado, E., Abraham, A., de Carvalho, A.: Hybrid Intelligent Algorithms and Applications. Information Science 180(14), 2633–2634 (2010)CrossRefGoogle Scholar
  26. 26.
    Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer, Boston (2003)Google Scholar
  27. 27.
    Mester, D., Braysys, O.: Active guided evolution strategies for large scale vehicle routing problems with time windows. Computer & Operations Research 32, 1593–1614 (2005)CrossRefGoogle Scholar
  28. 28.
    Voudouris, C., Tsanh, E.P.K.: Guided local search. Technical Report CSM-247. Department of Computer Sciences. University of Essex, Colchester, UK (1995)Google Scholar
  29. 29.
    Mester, D., Braysy, O., Dullaert, W.: A multi-parametric evolution strategies algorithm for vehicle routing problems. Expert Systems with Applications 34, 2964–2975 (2007)MATHGoogle Scholar
  30. 30.
    Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P. (eds.) Combinatorial Optimization, pp. 315–338. Wiley (1979)Google Scholar
  31. 31.
    Prakash, A., Deshmukh, S.G.: A multi-criteria customer allocation problem in supply chain environment: an artificial immune system with fuzzy logic controller based approach. Expert Systems with Applications 38(4), 3199–3208 (2011)CrossRefGoogle Scholar
  32. 32.
    Hajiaghaei-Keshteli, M.: The allocation of customers to potential distribution centers in supply chain networks: GA and AIA approaches. Applied Soft Computing Journal 11(2), 2069–2078 (2011)CrossRefGoogle Scholar
  33. 33.
    Wang, Y.J.: Improving particle swarm optimization performance with local search for high-dimensional function optimization. Optimization Methods and Software 25(5), 781–795 (2010)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Meeran, S., Morshed, M.S.: A hybrid genetic tabu search algorithm for solving job shop scheduling problems: a case study. Journal of Intelligent Manufacturing, doi:10.1007/s10845-011-0520-xGoogle Scholar
  35. 35.
    Wang, X., Gao, X.Z., Ovaska, S.J.: A hybrid artificial immune optimization method. International Journal of Computational Intelligence Systems 2(3), 249–256 (2009)Google Scholar
  36. 36.
    Guo, D., Wang, J., Huang, J., Han, R., Song, M.: Chaotic-NSGA-II: an effective algorithm to solve multi-objective optimization problems. In: Proceedings of the International Conference on Intelligent Computing and Integrated Systems (ICISS 2010), pp. 20–23 (2010)Google Scholar
  37. 37.
    Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics 17(3), 303–351 (2010)CrossRefGoogle Scholar
  38. 38.
    Tao, F., Zhang, L., Zhang, Z.H., Nee, A.Y.C.: A quantum multi-agent evolutionary algorithm for selection of partners in a virtual enterprise. Manufacturing Technology 59(1), 485–488 (2010)Google Scholar
  39. 39.
    Wozniak, M., Zmyslony, M.: Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 590–597. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dragan Simić
    • 1
  • Svetlana Simić
    • 2
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of MedicineUniversity of Novi SadNovi SadSerbia

Personalised recommendations