Advertisement

Cryptographic Applications of 3x3 Block Upper Triangular Matrices

  • Rafael Álvarez
  • Francisco Martínez
  • José-Francisco Vicent
  • Antonio Zamora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7209)

Abstract

In this paper we describe a special group of block upper triangular matrices with 3 ×3 blocks and elements in a finite field. We also verify that, with properly chosen parameters, the cardinality of the subgroup generated by one matrix of this group can be as large as required. Then we introduce two examples of this group of matrices employed in cryptography among the many available: a key exchange scheme and a pseudorandom generator.

Keywords

Block upper triangular matrices key exchange pseudo random generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, R., Ferrández, F., Vicent, J.F., Zamora, A.: Applying Quick Exponentiation for Block Upper Triangular Matrices. Science Direct 183, 729–737 (2006)zbMATHGoogle Scholar
  2. 2.
    Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 287–291 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmica, 1–15 (1986)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.: New directions In Cryptography. IEEE Trans. Information Theory 22, 644–654 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Lee, P.J., Lim, C.H.: Method for Exponentiation in Public-Key Cryptosystems. United States Patent 5,999,627 (1999)Google Scholar
  6. 6.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press (1994)Google Scholar
  7. 7.
    McCurley, K.: The discret logarithm problem. Cryptology and Computational Number Theory. In: Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)Google Scholar
  8. 8.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Florida (2001)Google Scholar
  9. 9.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Info. Theory 24, 106–110 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafael Álvarez
    • 1
  • Francisco Martínez
    • 1
  • José-Francisco Vicent
    • 1
  • Antonio Zamora
    • 1
  1. 1.Dpto. de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteAlicanteSpain

Personalised recommendations