Modelling Approaches

  • Nils Kalstad Svendsen
  • Stephen D. Wolthusen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7130)

Abstract

Understanding and mitigating risks and threats to critical infrastructures relies heavily on the ability to construct and validate models often involving physical systems or even human intervention. This, together with the wide range of scales from critical systems such as industrial process control systems of critical facilities to interactions among multiple sectors up to and including a global scale presents a very large problem space which can only be conquered by an equally broad range of modelling techniques commensurate to the infrastructure aspects being studied. Sophisticated domain-specific models do not necessarily provide the type of insight into dependencies and interactions, which are often driven by information and communication systems and necessitate the study of novel models. Similarly, however, conventional information security research is typically not concerned with interactions of information systems with physical environment, while at the same time conventional infrastructure models emphasise on well-understood statistical event models rather than considering adversarial behaviour.

Keywords

Random Graph Critical Infrastructure Dependency Type Fire Dynamics Simulator Infrastructure Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aalto, H.: Real-Time Receding Horizon Optimisation of Gas Pipeline Networks. Ph.D. thesis, Department of Automation and Systems Technology, Helsinki University of Technology, Espoo, Finland (2005)Google Scholar
  2. 2.
    Abdalla, R.M., Niall, K.M.: Location-Based Critical Infrastructure Interdependency (LBCII). Tech. Rep. TR 2009-130, Defence Research and Development Canada, Toronto, Ontario, Canada (2010)Google Scholar
  3. 3.
    Abele-Wigert, I., Dunn, M., Wenger, A., Mauer, V. (eds.): International CIIP Handbook 2006: An Inventory of 20 National and 6 International Critical Information Infrastructure Protection Policies, 3rd edn. Center for Security Studies, vol. I. ETH Zurich, Zurich, Switzerland (2006)Google Scholar
  4. 4.
    Albert, R., Albert, I., Nakarado, G.L.: Structural Vulnerability of the North American Power Grid. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 69(2), 025103 (2004), doi:10.1103/PhysRevE.69.025103CrossRefGoogle Scholar
  5. 5.
    Albert, R., Barabási, A.L.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999), doi:10.1126/science.286.5439.509MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74(1), 47–97 (2002), doi:10.1103/RevModPhys.74.47MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Albert, R., Jeong, H., Barabási, A.L.: Error and Attack Tolerance of Complex Networks. Nature 406, 378–382 (2000), doi:10.1038/35019019CrossRefGoogle Scholar
  8. 8.
    Alonso, F.D., Ferradása, E.G., Sánchez Péreza, J.F., Miñana Aznara, A., Ruiz Gimenoa, J., Martínez Alonso, J.: Characteristic Overpressure-Impulse-Distance Curves for Vapour Cloud Explosions Using the TNO Multi-Energy Model. Journal of Hazardous Materials 137(2), 734–741 (2006), doi:10.1016/j.jhazmat.2006.04.005CrossRefGoogle Scholar
  9. 9.
    Andrijcic, E., Horowitz, B.: A Macro-Economic Framework for Evaluation of Cyber Security Risks Related to Protection of Intellectual Property. Risk Analysis 26(4), 907–923 (2006), doi:10.1111/j.1539-6924.2006.00787.xCrossRefGoogle Scholar
  10. 10.
    Assaf, D.: Models of Critical Information Infrastructure Protection. International Journal of Critical Infrastructure Protection 1(1), 6–14 (2008), doi:10.1016/j.ijcip.2008.08.004CrossRefGoogle Scholar
  11. 11.
    Balducelli, C., Bologna, S., Di Pietro, A., Vicoli, G.: Analysing Interdependencies of Critical Infrastructures using Agent Discrete Event Simulation. International Journal of Emergency Management 2(4), 306–318 (2005), doi:10.1504/IJEM.2005.008742CrossRefGoogle Scholar
  12. 12.
    Barker, K., Santos, J.R.: Measuring the Efficacy of Inventory with a Dynamic Input-Output Model. International Journal of Production Economics 126(1), 130–143 (2010), doi:10.1016/j.ijpe.2009.08.011CrossRefGoogle Scholar
  13. 13.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Barrat, A., Weigl, M.: On the Properties of Small-World Network Models. The European Physical Journal B — Condensed Matter and Complex Systems 13(3), 547–560 (2000), doi:10.1007/s100510050067CrossRefGoogle Scholar
  15. 15.
    Barton, D.C., Stamber, K.L.: An Agent-Based Microsimulation of Critical Infrastructure Systems. Tech. Rep. SAND2000-0808C, Sandia National Laboratories, Albuquerque, NM, USA (2000)Google Scholar
  16. 16.
    Beck, U.: Risikogesellschaft: Auf dem Weg in eine andere Moderne. Edition Suhrkamp. Suhrkamp, Frankfurt, Germany (1986)Google Scholar
  17. 17.
    Bérard, C.: Group Model Building Using System Dynamics: An Analysis of Methodological Frameworks. Electronic Journal of Business Research Methods 8(1), 35–45 (2010)Google Scholar
  18. 18.
    Bier, V., Oliveros, S., Samuelson, L.: Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker. Journal of Public Economic Theory 9(4), 563–587 (2007), doi:10.1111/j.1467-9779.2007.00320.xCrossRefGoogle Scholar
  19. 19.
    Bier, V.M.: Game Theoretic Models for Critical Infrastructure Protection. Abstracts of the 2001 Society for Risk Analysis Annual Meeting “Risk Analysis in an Interconnected World” (2001)Google Scholar
  20. 20.
    Bier, V.M., Ferson, S., Haimes, Y.Y., Lambert, J.H., Small, M.J.: Risk of Extreme and Rare Events: Lessons from a Selection of Approaches. In: Risk Analysis and Society: An Interdisciplinary Characterization of the Field, pp. 74–118. Cambridge University Press, Cambridge (2004)Google Scholar
  21. 21.
    Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, Berlin (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Bollobás, B., Kozma, R., Miklós, D. (eds.): Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol. 18. János Bolyai Mathematical Society and Springer, Budapest (2009)MATHGoogle Scholar
  23. 23.
    Bollobás, B., Riordan, O.: The Diameter of a Scale-Free Random Graph. Combinatorica 24(1), 5–34 (2004), doi:10.1007/s00493-004-0002-2MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Borgatti, S.P.: Centrality and Network Flow. Social Networks 27(1), 55–71 (2005), doi:10.1016/j.socnet.2004.11.008CrossRefGoogle Scholar
  25. 25.
    Brams, S., Kilgour, M.D.: Game Theory and National Security. Basil Blackwell, Oxford (1988)Google Scholar
  26. 26.
    Branzel, R., Dimitrov, D., Tijs, S.: Models in Cooperative Game Theory, 2nd edn. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Burke, D.A.: Towards a Game Theory Model of Information Warfare. Ph.D. thesis, Faculty of the Graduate School of Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA (1999)Google Scholar
  28. 28.
    Bush, B.B., Dauelsberg, L.R., LeClaire, R.J., Powell, D.R., DeLand, S.M., Samsa, M.E.: Critical Infrastructure Protection Decision Support System (CIP/DSS) Project Overview. Tech. Rep. LA-UR-05-1870, Los Alamos National Laboratory, Los Alamos, NM, USA (2005)Google Scholar
  29. 29.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.S.: Network Robustness and Fragility: Percolation on Random Graphs. Physical Review Letters 85(25), 5468–5471 (2000), doi:10.1103/PhysRevLett.85.5468CrossRefGoogle Scholar
  30. 30.
    Carvalho, R., Buzna, L., Bono, F., Gutiérrez, E., Just, W., Arrowsmith, D.: Robustness of trans-European Gas Networks. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 80(1), 016106 (2009), doi:10.1103/PhysRevE.80.016106CrossRefGoogle Scholar
  31. 31.
    Casalicchio, E., Galli, E.: Metrics For Quantifying Interdependencies. In: Papa, M., Shenoi, S. (eds.) Critical Infrastructure Protection II: Proceedings of the Second Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP, vol. 290, pp. 215–227. Springer, Arlington (2008), doi:10.1007/978-0-387-88523-0_16Google Scholar
  32. 32.
    Casalicchio, E., Galli, E., Tucci, S.: Modeling and Simulation of Complex Interdependent Systems: A Federated Agent-Based Approach. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 72–83. Springer, Heidelberg (2009), doi:10.1007/978-3-642-03552-4_7CrossRefGoogle Scholar
  33. 33.
    Casalicchio, E., Galli, E., Tucci, S.: Macro and Micro Agent-Based Modeling and Simulation of Critical Infrastructures. In: Rizzo, A. (ed.) Complexity in Engineering (COMPENG 2010), pp. 79–81. IEEE Press, Rome (2010), doi:10.1109/COMPENG.2010.20CrossRefGoogle Scholar
  34. 34.
    Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster Propagation in Heterogeneous Media via Markovian Agents. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 328–335. Springer, Heidelberg (2009), doi:10.1007/978-3-642-03552-4_31CrossRefGoogle Scholar
  35. 35.
    Chassin, D.P., Posse, C.: Evaluating North American Electric Grid Reliability using the Barabási-Albert Network Model. Physica A: Statistical Mechanics and Its Applications 355(2-4), 667–677 (2005), doi:10.1016/j.physa.2005.02.051CrossRefGoogle Scholar
  36. 36.
    Cleaver, R.P., Humphreys, C.E., Morgan, J.D., Robinson, C.G.: Development of a Model to Predict the Effects of Explosions in Compact Congested Regions. Journal of Hazardous Materials 53(1–3), 35–55 (1997), doi:10.1016/S0304-3894(96)01817-1CrossRefGoogle Scholar
  37. 37.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the Internet to Random Breakdowns. Physical Review Letters 85(21), 4626–4628 (2000), doi:10.1103/PhysRevLett.85.4626CrossRefGoogle Scholar
  38. 38.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the Internet under Intentional Attack. Physical Review Letters 86(16), 3682–3685 (2001), doi:10.1103/PhysRevLett.86.3682CrossRefGoogle Scholar
  39. 39.
    Crowther, K.G.: Decentralized Risk Management for Strategic Preparedness of Critical Infrastructure through Decomposition of the Inoperability Input–Output Model. International Journal of Critical Infrastructure Protection 1(1), 53–67 (2008), doi:10.1016/j.ijcip.2008.08.009CrossRefGoogle Scholar
  40. 40.
    D’Agostino, G., Cannata, R., Rosato, V.: On Modelling of Inter-dependent Network Infrastructures by Extended Leontief Models. In: Rome, E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 1–13. Springer, Heidelberg (2010), doi:10.1007/978-3-642-14379-3_1CrossRefGoogle Scholar
  41. 41.
    Dauelsberg, L., Outkin, A.: Modeling Economic Impacts to Critical Infrastructures in a System Dynamics Framework. In: Sterman, J.D., Repenning, N.P., Langer, R.S., Rowe, J.I., Yanni, J.M. (eds.) Proceedings of the 23rd International Conference of the System Dynamics Society, p. 63. System Dynamics Society, Boston (2005)Google Scholar
  42. 42.
    De Porcellinis, S., Oliva, G., Panzieri, S., Setola, R.: A Holistic-Reductionistic Approach for Modeling Interdependencies. In: Palmer, C., Shenoi, S. (eds.) Critical Infrastructure Protection III: Proceedings of the Third Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP AICT, vol. 311, pp. 215–227. Springer, Hanover (2009), doi:10.1007/978-3-642-04798-5_15Google Scholar
  43. 43.
    De Porcellinis, S., Panzieri, S., Setola, R., Ulivi, G.: Simulation of Heterogeneous and Interdependent Critical Infrastructures. International Journal of Critical Infrastructures 4(1/2), 110–128 (2008), doi:10.1504/IJCIS.2008.016095CrossRefGoogle Scholar
  44. 44.
    de Solla Price, D.J.: Networks of Scientific Papers. Science 149(3683), 510–515 (1965), doi:10.1126/science.149.3683.510CrossRefGoogle Scholar
  45. 45.
    Dietzenbacher, E., Lahr, M.L. (eds.): Wassily Leontief and Input-Output Economics. Cambridge University Press, Cambridge (2004)Google Scholar
  46. 46.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical Phenomena in Complex Networks. Reviews of Modern Physics 80(4), 1275–1335 (2008), doi:10.1103/RevModPhys.80.1275CrossRefGoogle Scholar
  47. 47.
    Drysdale, D.: An Introduction to Fire Dynamics, 2nd edn. John Wiley & Sons, Chichester (2002)Google Scholar
  48. 48.
    Dudenhoeffer, D.D., Permann, M.R., Manic, M.: CIMS: A Framework for Infrastructure Interdependency Modeling and Analysis. In: Proceedings of the 2006 Winter Simulation Conference (WSC 2006), p. 478. IEEE Press, Phoenix (2006), doi:10.1109/WSC.2006.323119CrossRefGoogle Scholar
  49. 49.
    Dudenhoeffer, D.D., Permann, M.R., Sussman, E.M.: A Parallel Simulation Framework for Infrastructure Modeling and Analysis. In: Proceedings of the 34th Winter Simulation Conference (WSC 2002), p. 1971. IEEE Press, San Diego (2002), doi:10.1109/WSC.2002.1166498CrossRefGoogle Scholar
  50. 50.
    Dunn, M., Mauer, V., Abele-Wigert, I. (eds.): Ineternational CIIP Handbook 2006: Analyzing Issues, Challenges, and Prospects, 3rd edn. Center for Security Studies, vol. II. ETH Zurich, Zurich (2006)Google Scholar
  51. 51.
    Erdős, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)MathSciNetGoogle Scholar
  52. 52.
    Erdős, P., Rényi, A.: On the Evolution of Random Graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960)Google Scholar
  53. 53.
    Ezell, B.C.: Infrastructure Vulnerability Assessment Model (I-VAM). Risk Analysis 27(3), 571–583 (2007), doi:10.1111/j.1539-6924.2007.00907.xCrossRefGoogle Scholar
  54. 54.
    Flammini, F., Vittorini, V., Mazzocca, N., Pragliola, C.: A Study on Multiformalism Modeling of Critical Infrastructures. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 336–343. Springer, Heidelberg (2009), doi:10.1007/978-3-642-03552-4_32CrossRefGoogle Scholar
  55. 55.
    Flaxman, A.D., Frieze, A.M., Vera, J.: Adversarial Deletion in a Scale-Free Random Graph Process. Combinatorics, Probability and Computing 16(2), 261–270 (2007), doi:10.1017/S0963548306007681MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Forrester, J.W.: Industrial Dynamics. Pegasus Communications, Waltham, MA, USA (1961)Google Scholar
  57. 57.
    Forrester, J.W.: Principles of Systems, 2nd edn. Pegasus Communications, Waltham, MA, USA (1961)Google Scholar
  58. 58.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)Google Scholar
  59. 59.
    Ghosh, A.: Input-Output Approach in an Allocation System. Economica 25(97), 58–64 (1958)CrossRefGoogle Scholar
  60. 60.
    Gonzalez, J.J., Sarriegi, J.M., Gurrutxaga, A.: A Framework for Conceptualizing Social Engineering Attacks. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 79–90. Springer, Heidelberg (2006), doi:10.1007/11962977_7CrossRefGoogle Scholar
  61. 61.
    Haimes, Y.Y., Chittester, C.G.: A Roadmap for Quantifying the Efficacy of Risk Management of Information Security and Interdependent SCADA Systems. Journal of Homeland Security and Emergency Management 2(2), 1–23 (2005), doi:10.2202/1547-7355.1117CrossRefGoogle Scholar
  62. 62.
    Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Crowther, K.G., Lian, C.: Inoperability Input-Output Model for Interdependent Infrastructure Sectors II: Case Studies. Journal of Infrastructure Systems 11(2), 80–92 (2005), doi:10.1061/(ASCE)1076-0342(2005)11:2(80)CrossRefGoogle Scholar
  63. 63.
    Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Lian, C., Crowther, K.G.: Inoperability Input-Output Model for Interdependent Infrastructure Sectors I: Theory and Methodology. Journal of Infrastructure Systems 11(2), 67–79 (2005), doi:10.1061/(ASCE)1076-0342(2005)11:2(67)CrossRefGoogle Scholar
  64. 64.
    Haimes, Y.Y., Jiang, P.: Leontief-Based Model of Risk in Complex Interconnected Infrastructures. Journal of Infrastructure Systems 7(1), 1–12 (2001), doi:10.1061/(ASCE)1076-0342(2001)7:1(1)CrossRefGoogle Scholar
  65. 65.
    Hamilton, T., Mesic, R.: A Simple Game-Theoretic Approach to Suppression of Enemy Defenses and Other Time Critical Target Analyses. Tech. Rep. DB-385-AF, RAND Corporation, Santa Monica, CA, USA (2004)Google Scholar
  66. 66.
    Han, Z.Y., Weng, W.G.: An Integrated Quantitative Risk Analysis Method for Natural Gas Pipeline Network. Journal of Loss Prevention in the Process Industries 23(3), 428–436 (2010), doi:10.1016/j.jlp.2010.02.003CrossRefGoogle Scholar
  67. 67.
    Hare, F., Goldstein, J.: The Interdependent Security Problem in the Defense Industrial Base: An Agent-Based Model on a Social Network. International Journal of Critical Infrastructure Protection 3(3–4), 128–139 (2010), doi:10.1016/j.ijcip.2010.07.001CrossRefGoogle Scholar
  68. 68.
    Haywood Jr., O.G.: Military Decision and Game Theory. Operations Research 2(4), 365–385 (1954), doi:10.1287/opre.2.4.365CrossRefGoogle Scholar
  69. 69.
    Hernantes, J., Lauge, A., Labaka, L., Rich, E.H., Sveen, F.O., Sarriegi, J.M., Martinez-Moyano, I.J., Gonzalez, J.J.: Collaborative Modeling of Awareness in Critical Infrastructure Protection. In: Proceedings of the 44th Hawaii International International Conference on Systems Science (HICSS-44 2011), pp. 1–10. IEEE Press, Koloa (2011), doi:10.1109/HICSS.2011.113CrossRefGoogle Scholar
  70. 70.
    Jenelius, E., Westin, J., Holmgren, Å.J.: Critical Infrastructure Protection under Imperfect Attacker Perception. International Journal of Critical Infrastructure Protection 3(1), 16–26 (2010), doi:10.1016/j.ijcip.2009.10.002CrossRefGoogle Scholar
  71. 71.
    Jung, J.: Probabilistic Extension to the Inoperability Input-Output Model: P-IIM. Ph.D. thesis, University of Virginia, Department of Systems and Information Engineering, Charlottesville, VA, USA (2009)Google Scholar
  72. 72.
    Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica 4(4), 373–395 (1984), doi:10.1007/BF02579150MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Kim, D.H., Motter, A.E.: Fluctuation-Driven Capacity Distribution in Complex Networks. New Journal of Physics 10, 053022 (2008), doi: 10.1088/1367-2630/10/5/053022 CrossRefGoogle Scholar
  74. 74.
    Kim, D.H., Motter, A.E.: Resource Allocation Pattern in Infrastructure Networks. Journal of Physics A: Mathematical and Theoretical 41(22), 224019 (2008), doi: 10.1088/1751-8113/41/22/224019MathSciNetCrossRefGoogle Scholar
  75. 75.
    Kim, J., Dobson, I.: Approximating a Loading-Dependent Cascading Failure Model With a Branching Process. IEEE Transactions on Reliability 59(4), 691–699 (2010), doi:10.1109/TR.2010.2055928CrossRefGoogle Scholar
  76. 76.
    Lagadec, P.: La Civilisation du Risque: Catastrophes Technologiques et Responsabilité Sociale. Science Ouverte. Éditions du Seuil, Paris, France (1981)Google Scholar
  77. 77.
    Lakdawalla, D.N., Zanjani, G.: Insurance, Self-Protection, and the Economics of Terrorism. Tech. Rep. WR-171-ICJ, RAND Corporation, Santa Monica, CA, USA (2004)Google Scholar
  78. 78.
    LeClaire, R., Bush, B., Dauelsberg, L., Powell, D.: Critical Infrastructure Protection Decision Support System. In: Sterman, J.D., Repenning, N.P., Langer, R.S., Rowe, J.I., Yanni, J.M. (eds.) Proceedings of the 23rd International Conference of the System Dynamics Society, p. 97. System Dynamics Society, Boston (2005)Google Scholar
  79. 79.
    LeClaire, R., O’Reilly, G.: Leveraging a High Fidelity Switched Network Model to Inform a System Dynamics Model of the Telecommunications Infrastructure. In: Sterman, J.D., Repenning, N.P., Langer, R.S., Rowe, J.I., Yanni, J.M. (eds.) Proceedings of the 23rd International Conference of the System Dynamics Society, p. 97. System Dynamics Society, Boston (2005)Google Scholar
  80. 80.
    Leontief, W. (ed.): Input-Output Economics, 2nd edn. Oxford University Press, Oxford (1986)Google Scholar
  81. 81.
    Leung, M., Haimes, Y.Y., Santos, J.R.: Supply- and Output-Side Extensions to the Inoperability Input-Output Model for Interdependent Infrastructures. Journal of Infrastructure Systems 13(4), 299–310 (2007), doi:10.1061/(ASCE)1076-0342(2007)13:4(299)CrossRefGoogle Scholar
  82. 82.
    Leung, M.F.P.: Supply- and Output-Side Extensions to Inoperability Input-Output Model (IIM) with Application to Interdependencies of Road Transportation System. Ph.D. thesis, University of Virginia, Department of Systems and Information Engineering, Charlottesville, VA, USA (2006)Google Scholar
  83. 83.
    Lian, C., Haimes, Y.Y.: Managing the Risk of Terrorism to Interdependent Infrastructure Systems through the Dynamic Inoperability Input-Output Model. Systems Engineering 9(3), 241–258 (2006), doi:10.1002/sys.20051CrossRefGoogle Scholar
  84. 84.
    Liu, D., Wang, X.F., Camp, J.: Game-Theoretic Modeling and Analysis of Insider Threats. International Journal of Critical Infrastructure Protection 1(1), 75–80 (2008), doi:10.1016/j.ijcip.2008.08.001CrossRefGoogle Scholar
  85. 85.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of Complex Network. Nature 473, 167–173 (2011), doi:10.1038/nature10011CrossRefGoogle Scholar
  86. 86.
    Lunden, N., Sveen, R., Lund, H., Svendsen, N., Wolthusen, S.: Interactive Visualization of Interdependencies and Vulnerabilities in Constrained Environments. In: Moore, T., Shenoi, S. (eds.) Critical Infrastructure Protection IV: Proceedings of the Fourth Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP AICT, vol. 342, pp. 171–183. Springer, Washington D.C (2010), doi:10.1007/978-3-642-16806-2_12Google Scholar
  87. 87.
    Magnien, C., Latapy, M., Guillaume, J.L.: Impact of Random Failures and Attacks on Poisson and Power-Law Random Networks. ACM Computing Surveys 43(3), 13 (2011), doi:10.1145/1922649.1922650CrossRefGoogle Scholar
  88. 88.
    Major, J.A.: Advanced Techniques for Modeling Terrorism Risk. The Journal of Risk Finance 4(1), 15–24 (2002), doi:10.1108/eb022950MathSciNetCrossRefGoogle Scholar
  89. 89.
    Marsh, R.T. (ed.): Critical Infrastructures: Protecting America’s Infrastructures. United States Government Printing Office, Washington D.C., USA (1997); Report of the President’s Commission on Critical Infrastructure ProtectionGoogle Scholar
  90. 90.
    McEvoy, T.R., Wolthusen, S.D.: A Formal Adversary Capability Model for SCADA Environments. In: Xenakis, C., Wolthusen, S. (eds.) CRITIS 2010. LNCS, vol. 6712, pp. 93–103. Springer, Heidelberg (2011)Google Scholar
  91. 91.
    McGrattan, K., Baum, H., Rehm, R., Mell, W., McDermott, R., Hostikka, S., Floyd, J.: Fire Dynamics Simulator (Version 5) Technical Reference Guide Volume 1: Mathematical Model. National Institute of Standards and Technology, Gaithersburg, MD, USA, NIST Special Publication 1018-5 (2009)Google Scholar
  92. 92.
    Milgram, S.: The Small World Problem. Psychology Today 1(1), 60–67 (1967)Google Scholar
  93. 93.
    Min, H.S.J., Beyeler, W., Brown, T., Son, Y.J., Jones, A.T.: Toward Modeling and Simulation of Critical National Infrastructure Interdependencies. IIE Transactions 39(1), 57–71 (2007), doi:10.1080/07408170600940005CrossRefGoogle Scholar
  94. 94.
    Motter, A.E., Lai, Y.C.: Cascade-Based Attacks on Complex Networks. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 66(6), 378–382 (2002), doi:10.1103/PhysRevE.66.065102Google Scholar
  95. 95.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100(1), 295–320 (1928), doi:10.1007/BF01448847MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd edn. Princeton University Press, Princeton (1947)Google Scholar
  97. 97.
    Newman, M., Barabási, A.L., Watts, D.J. (eds.): The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, Princeton (2006)MATHGoogle Scholar
  98. 98.
    Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003), doi:10.1137/S003614450342480MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Nieuwenhuijs, A., Luiijf, E., Klaver, M.: Modeling Dependencies In Critical Infrastructures. In: Papa, M., Shenoi, S. (eds.) Critical Infrastructure Protection II: Proceedings of the Second Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP, vol. 290, pp. 205–213. Springer, Heidelberg (2008), doi:10.1007/978-0-387-88523-0Google Scholar
  100. 100.
    North, M.: Agent-Basd Modeling of Complex Infrastructures. In: Sallach, D., Wolsko, T. (eds.) Proceedings of the Workshop on Simulation of Social Agents: Architectures and Institutions, pp. 239–250. University of Chicago and Argonne National Laboratory, Chicago (2000); ANL/DIS/TM-60Google Scholar
  101. 101.
    Olenick, S.M., Carpenter, D.J.: An Updated International Survey of Computer Models for Fire and Smoke. Journal of Fire Protection Engineering 13(2), 87–110 (2003), doi:10.1177/1042391503013002001CrossRefGoogle Scholar
  102. 102.
    Oliva, G., Panzieri, S., Setola, R.: Agent-Based Input–Output Interdependency Model. International Journal of Critical Infrastructure Protection 3(2), 76–82 (2010), doi:10.1016/j.ijcip.2010.05.001CrossRefGoogle Scholar
  103. 103.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)MATHGoogle Scholar
  104. 104.
    Panzieri, S., Setola, R.: Failure Propagation in Critical Interdependent Infrastructures. International Journal of Modelling, Identification, and Control 3(1), 69–78 (2008), doi:10.1504/IJMIC.2008.018186CrossRefGoogle Scholar
  105. 105.
    Panzieri, S., Setola, R., Ulivi, G.: An Agent Based Simulator for Critical Interdependent Infrastructures. In: Proceedings of the 2nd International Conference on Critical Infrastructures (CRIS 2004), Grenoble, France (2004)Google Scholar
  106. 106.
    Pasqualini, D., Witkowski, M.S., Klare, P.C., Patelli, P., Cleland, C.A.: A Model for a Water Potable Distribution System and its Impacts resulting from a Water Contamination Scenario. In: Größler, A., Rouwette, E.A.J.A., Langer, R.S., Rowe, J.I., Yanni, J.M. (eds.) Proceedings of the 24th International Conference of the System Dynamics Society, pp. 99–100. Wiley, Nijmegen (2006)Google Scholar
  107. 107.
    Patterson, S.A., Apostolakis, G.E.: Identification of Critical Locations Across Multiple Infrastructures for Terrorist Actions. Reliability Engineering & System Safety 92(9), 1183–1203 (2007), doi:10.1016/j.ress.2006.08.004CrossRefGoogle Scholar
  108. 108.
    Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic Books, New York (1984)Google Scholar
  109. 109.
    Ingeduld, P.: Real Time Analysis for Early Warning Systems. In: Pollert, J., Dedus, B. (eds.) Security of Water Supply Systems: From Source to Tap. NATO Science for Peace and Security Series C: Environmental Security, vol. 8, pp. 65–84. Springer, Heidelberg (2006), doi:10.1007/1-4020-4564-6_7CrossRefGoogle Scholar
  110. 110.
    Rahmani, A., Ji, M., Mesbahi, M., Egerstedt, M.: Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective. SIAM Journal on Control and Optimization 48(1), 162–186 (2009), doi:10.1137/060674909MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Rinaldi, S.M.: Modeling and Simulating Critical Infrastructures and Their Interdependencies. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004), pp. 1–8. IEEE Computer Society Press, Big Island (2004), doi:10.1109/HICSS.2004.1265180Google Scholar
  112. 112.
    Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, Understanding, and Analyzing Critical Infrastructure Dependencies. IEEE Control Systems Magazine 21(6), 11–25 (2001), doi:10.1109/37.969131CrossRefGoogle Scholar
  113. 113.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., De Porcellinis, S., Setola, R.: Modelling Interdependent Infrastructures using Interacting Dynamical Models. International Journal of Critical Infrastructures 4(1/2), 63–79 (2008), doi:10.1504/IJCIS.2008.016092CrossRefGoogle Scholar
  114. 114.
    Sandler, T., Arce, D.G.: Terrorism & Game Theory. Simulation & Gaming 34(3), 319–337 (2003), doi:10.1177/1046878103255492CrossRefGoogle Scholar
  115. 115.
    Sandler, T., Siqueira, K.: Games and Terrorism. Simulation & Gaming 40(2), 164–192 (2009), doi:10.1177/1046878108314772CrossRefGoogle Scholar
  116. 116.
    Santos, J.R.: Interdependency Analysis with Multiple Probabilistic Sector Inputs. Journal of Industrial and Management Optimization 4(3), 489–510 (2008), doi:10.3934/jimo.2008.4.489MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Santos, J.R., Haimes, Y.Y.: Modeling the Demand Reduction Input-Output (I–O) Inoperability Due to Terrorism of Interconnected Infrastructures. Risk Analysis 24(6), 1437–1451 (2004), doi:10.1111/j.0272-4332.2004.00540.xCrossRefGoogle Scholar
  118. 118.
    Santos, J.R., Haimes, Y.Y., Lian, C.: A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies. Risk Analysis 27(5), 1283–1298 (2007), doi:10.1111/j.1539-6924.2007.00957.xCrossRefGoogle Scholar
  119. 119.
    Sarriegi, J.M., Santos, J., Torres, J.M., Imizcoz, D., Egozcue, E., Liberal, D.: Modeling and Simulating Information Security Management. In: López, J., Hämmerli, B.M. (eds.) CRITIS 2007. LNCS, vol. 5141, pp. 327–336. Springer, Heidelberg (2008), doi:10.1007/978-3-540-89173-4_27CrossRefGoogle Scholar
  120. 120.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003); Three volumesMATHGoogle Scholar
  121. 121.
    Setola, R.: Analysis of Interdependencies Between Italy’s Economic Sectors. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection: Proceedings of the First Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP, vol. 253, pp. 311–321. Springer, Hanover (2007), doi:10.1007/978-0-387-75462-8_22Google Scholar
  122. 122.
    Setola, R., De Porcellinis, S., Sforna, M.: Critical Infrastructure Dependency Assessment using the Input–Output Inoperability Model. International Journal of Critical Infrastructure Protection 2(4), 170–178 (2009), doi:10.1016/j.ijcip.2009.09.002CrossRefGoogle Scholar
  123. 123.
    Solé, R.V., Rosas-Casals, M., Corominas-Murtra, B., Valverde, S.: Robustness of the European Power Grids under Intentional Attack. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 77(2), 026102 (2008), doi:10.1103/PhysRevE.77.026102CrossRefGoogle Scholar
  124. 124.
    Svendsen, N., Wolthusen, S.: Multigraph Dependency Models for Heterogeneous Infrastructures. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection: Proceedings of the First Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP, vol. 253, pp. 337–350. Springer, Hanover (2007), doi:10.1007/978-0-387-75462-8_24Google Scholar
  125. 125.
    Svendsen, N.K., Wolthusen, S.D.: An Analysis of Cyclical Interdependencies in Critical Infrastructures. In: Lopez, J., Hämmerli, B.M. (eds.) CRITIS 2007. LNCS, vol. 5141, pp. 25–36. Springer, Heidelberg (2008), doi:10.1007/978-3-540-89173-4_3CrossRefGoogle Scholar
  126. 126.
    Tanaka, H.: Quantitative Analysis of Information Security Interdependency between Industrial Sectors. In: Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM 2009), pp. 574–583. IEEE Computer Society Press, Lake Buena Vista (2009), doi:10.1109/ESEM.2009.5314218CrossRefGoogle Scholar
  127. 127.
    Tanner, H.G.: On the Controllability of Nearest Neighbor Interconnections. In: Cassandras, C.G. (ed.) Proceedings of the 43rd IEEE Conference on Decision and Control (CDC 2004), p. 2467. IEEE Press (2004), doi:10.1109/CDC.2004.1428782Google Scholar
  128. 128.
    Thomas, W.H., North, M.J., Macal, C.M., Peerenboom, J.P.: From Physics to Finances: Complex Adaptive Systems Representation of Infrastructure Interdependencies. United States Naval Surface Warfare Center, Dahlgren, VA, USA (2003); Naval Surface Warfare Center Technical DigestGoogle Scholar
  129. 129.
    Tolone, W.J.: Interactive Visualizations for Critical Infrastructure Analysis. International Journal of Critical Infrastructure Protection 2(3), 124–134 (2009), doi:10.1016/j.ijcip.2009.07.004CrossRefGoogle Scholar
  130. 130.
    Travers, J., Milgram, S.: An Experimental Study of the Small World Problem. Sociometry 32(4), 425–443 (1969)CrossRefGoogle Scholar
  131. 131.
    United States Department of Commerce, National Institute of Standards and Technology, Computer Systems Laboratory: Integration Definition for Function Modeling (IDEF0). United States Draft Federal Information Standard 183 (1993)Google Scholar
  132. 132.
    Wang, X., Guan, S., Lai, C.H.: Protecting Infrastructure Networks from Cost-Based Attacks. New Journal of Physics 11, 033006 (2009), doi: 10.1088/1367-2630/11/3/033006CrossRefGoogle Scholar
  133. 133.
    Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)Google Scholar
  134. 134.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393, 440–442 (1998), doi:10.1038/30918CrossRefGoogle Scholar
  135. 135.
    Wolthusen, S.D.: GIS-based Command and Control Infrastructure for Critical Infrastructure Protection. In: Proceedings of the First IEEE International Workshop on Critical Infrastructure Protection (IWCIP 2005), pp. 40–47 (2005), doi:10.1109/IWCIP.2005.12Google Scholar
  136. 136.
    Woo, G.: Quantitative Terrorism Risk Assessment. The Journal of Risk Finance 4(1), 7–14 (2002), doi:10.1108/eb022949CrossRefGoogle Scholar
  137. 137.
    Yazdani, A., Jeffrey, P.: Complex Network Analysis of Water Distribution Systems. Chaos 21(1), 016111 (2011), doi:10.1063/1.3540339CrossRefGoogle Scholar
  138. 138.
    Yoshida, M., Kobayashi, K.: Disclosure Strategies for Critical Infrastructure against Terror Attacks. In: Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC 2010), pp. 3194–3199. IEEE Press, Istanbul (2010), doi:10.1109/ICSMC.2010.5642277CrossRefGoogle Scholar
  139. 139.
    Zhang, G., Wang, C., Zhang, J., Yang, J., Zhang, Y., Duan, M.: Vulnerability Assessment of Bulk Power Grid Based on Complex Network Theory. In: Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2008), pp. 1554–1558. IEEE Press, Nanjing (2008), doi:10.1109/DRPT.2008.4523652CrossRefGoogle Scholar
  140. 140.
    Zhu, G.Y., Henson, M.A., Megan, L.: Dynamic Modeling and Linear Model Predictive Control of Gas Pipeline Networks. Journal of Process Control 11(2), 129–148 (2001), doi:10.1016/S0959-1524(00)00044-5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nils Kalstad Svendsen
    • 1
  • Stephen D. Wolthusen
    • 1
  1. 1.Norwegian Information Security LaboratoryGjøvik University CollegeGjøvikNorway

Personalised recommendations