Secure Two-Party Computation with Low Communication

  • Ivan Damgård
  • Sebastian Faust
  • Carmit Hazay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

We propose a 2-party UC-secure protocol that can compute any function securely. The protocol requires only two messages, communication that is poly-logarithmic in the size of the circuit description of the function, and the workload for one of the parties is also only poly-logarithmic in the size of the circuit. This implies, for instance, delegatable computation that requires no expensive off-line phase and remains secure even if the server learns whether the client accepts its results. To achieve this, we define two new notions of extractable hash functions, propose an instantiation based on the knowledge of exponent in an RSA group, and build succinct zero-knowledge arguments in the CRS model.

Keywords

Hash Function Random Oracle Homomorphic Encryption Random Oracle Model Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABOR00]
    Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast Verification of Any Remote Procedure Call: Short Witness-Indistinguishable One-Round Proofs for NP. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 463–474. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. [AIK10]
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [AS98]
    Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np. J. ACM 45(1), 70–122 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. [BCCT11]
    Bitansky, N., Canetti, R., Chiesaz, A., Tromer, E.: From extractable collision resistance to succinct non- interactive arguments of knowledge, and back again. Cryptology ePrint Archive, Report 2011/443 (2011)Google Scholar
  5. [BFLS91]
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC, pp. 21–31 (1991)Google Scholar
  6. [BGV11]
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)Google Scholar
  7. [BP04]
    Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [BR06]
    Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [BSS05]
    Ben-Sasson, E., Sudan, M.: Simple pcps with poly-log rate and query complexity. In: STOC, pp. 266–275 (2005)Google Scholar
  10. [BV11a]
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: FOCS (2011)Google Scholar
  11. [BV11b]
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)Google Scholar
  12. [Can00]
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  14. [CKV10]
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)Google Scholar
  15. [CL08]
    Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. [Cle86]
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC, pp. 364–369 (1986)Google Scholar
  17. [Dam91]
    Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  18. [Den06]
    Dent, A.W.: The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the Standard Model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. [DFH11]
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. Cryptology ePrint Archive, Report 2011/508 (2011), http://eprint.iacr.org/
  20. [Din07]
    Dinur, I.: The pcp theorem by gap amplification. J. ACM 54(3), 12 (2007)MathSciNetCrossRefGoogle Scholar
  21. [DLN+ 04]
    Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct np proofs and spooky interactions (2004), http://www.openu.ac.il/home/mikel/papers/spooky.ps
  22. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  23. [GGP10]
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)Google Scholar
  24. [GKK+ 11]
    Gordon, D., Katz, J., Kolesnikov, V., Malkin, T., Raykov, M., Vahlis, Y.: Secure computation with sublinear amortized work. Cryptology ePrint Archive, Report 2011/482 (2011)Google Scholar
  25. [GL90]
    Goldwasser, S., Levin, L.A.: Fair Computation of General Functions in Presence of Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)Google Scholar
  26. [GLR11]
    Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive, Report 2011/456 (2011)Google Scholar
  27. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  28. [Gol04]
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press (2004)Google Scholar
  29. [Gro10]
    Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. [Gro11]
    Groth, J.: Minimizing non-interactive zero-knowledge proofs using fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/012 (2011)Google Scholar
  31. [GW11]
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)Google Scholar
  32. [HT98]
    Hada, S., Tanaka, T.: On the Existence of 3-Round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998)Google Scholar
  33. [IKO+ 11]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient Non-interactive Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. [IKP10]
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure Multiparty Computation with Minimal Interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010)Google Scholar
  35. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)Google Scholar
  36. [IPS09]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. [Kil92]
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC, pp. 723–732 (1992)Google Scholar
  38. [KK07]
    Katz, J., Koo, C.-Y.: Round-Efficient Secure Computation in Point-to-Point Networks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. [KO97]
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)Google Scholar
  40. [LP11]
    Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. [Mer87]
    Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)Google Scholar
  42. [Mic00]
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)MathSciNetCrossRefMATHGoogle Scholar
  43. [Nao03]
    Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  44. [NN01]
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: STOC, pp. 590–599 (2001)Google Scholar
  45. [NO09]
    Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  46. [PS94]
    Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: STOC, pp. 194–203 (1994)Google Scholar
  47. [PSSW09]
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. [vDGHV10]
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  49. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Sebastian Faust
    • 1
  • Carmit Hazay
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations